Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560461

RESUMO

Maize production and productivity are affected by drought stress in tropical and subtropical ecologies, as the majority of the area under maize cultivation in these ecologies is rain-fed. The present investigation was conducted to study the physiological and biochemical effects of 24-Epibrassinolide (EBR) as a plant hormone on drought tolerance in maize. Two maize hybrids, Vivek hybrid 9 and Bio 9637, were grown under three different conditions: (i) irrigated, (ii) drought, and (iii) drought+EBR. A total of 2 weeks before the anthesis, irrigation was discontinued to produce a drought-like condition. In the drought+EBR treatment group, irrigation was also stopped, and in addition, EBR was applied as a foliar spray on the same day in the drought plots. It was observed that drought had a major influence on the photosynthesis rate, membrane stability index, leaf area index, relative water content, and leaf water potential; this effect was more pronounced in Bio 9637. Conversely, the activities of antioxidant enzymes such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) increased in both hybrids under drought conditions. Specifically, Vivek hybrid 9 showed 74% higher CAT activity under drought conditions as compared to the control. Additionally, EBR application further enhanced the activity of this enzyme by 23% compared to plants under drought conditions. Both hybrids experienced a significant reduction in plant girth due to drought stress. However, it was found that exogenously applying EBR reduced the detrimental effects of drought stress on the plant, and this effect was more pronounced in Bio 9637. In fact, Bio 9637 treated with EBR showed an 86% increase in proline content and a 70% increase in glycine betaine content compared to untreated plants under drought conditions. Taken together, our results suggested EBR enhanced tolerance to drought in maize hybrids. Hence, pre-anthesis foliar application of EBR might partly overcome the adverse effects of flowering stage drought in maize.


Assuntos
Brassinosteroides , Esteroides Heterocíclicos , Estresse Fisiológico , Zea mays , Secas , Antioxidantes/farmacologia , Água/farmacologia
2.
Sci Rep ; 12(1): 12050, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835974

RESUMO

Tropospheric Biennial Oscillation (TBO) is characterized by a tendency for a relatively stronger monsoon to be followed by a relatively weaker one (positive) or vice-versa (negative). This study examines the distribution of different convective systems occurring during TBO phases over the Indian monsoon region. During negative TBO phase, convection is preferential over the Arabian Sea (AS), whereas during positive TBO phase, it is favoured over the land areas and Bay of Bengal (BoB). The isolated shallow convection (ISC) is dominated over the AS and Indian west coast during negative TBO years. A relatively stable environment (statically) capped with drier mid-troposphere results in abundant ISC over the AS. Broad stratiform rain (BSR) dominates over the central and east coast of India, BoB and Myanmar coast during positive TBO years and wide convective core (WCC) are present along the orographic regions, i.e., Myanmar coast and Western Ghats during negative TBO phase. The anomalous easterlies induced by the upper-ocean temperature gradient interact with the mean monsoon winds during positive TBO to provide pathways for developing BSR echoes. The deep-wide convection (DWC) are higher along the Himalayan foothills during positive TBO years. The moist low-level flow from the AS is trapped by dry mid-level flow from high latitudes, resulting in orographic lifting along the Himalayan foothills and form DWC.

3.
Mol Biol Rep ; 49(12): 12091-12107, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35752697

RESUMO

Conventional agricultural practices rely heavily on chemical fertilizers to boost production. Among the fertilizers, phosphatic fertilizers are copiously used to ameliorate low-phosphate availability in the soil. However, phosphorus-use efficiency (PUE) for major cereals, including maize, is less than 30%; resulting in more than half of the applied phosphate being lost to the environment. Rock phosphate reserves are finite and predicted to exhaust in near future with the current rate of consumption. Thus, the dependence of modern agriculture on phosphatic fertilizers poses major food security and sustainability challenges. Strategies to optimize and improve PUE, like genetic interventions to develop high PUE cultivars, could have a major impact in this area. Here, we present the current understanding and recent advances in the biological phenomenon of phosphate uptake, translocation, and adaptive responses of plants under phosphate deficiency, with special reference to maize. Maize is one of the most important cereal crops that is cultivated globally under diverse agro-climatic conditions. It is an industrial, feed and food crop with multifarious uses and a fast-rising global demand and consumption. The interesting aspects of diversity in the root system architecture traits, the interplay between signaling pathways contributing to PUE, and an in-depth discussion on promising candidate genes for improving PUE in maize are elaborated.


Assuntos
Fósforo , Zea mays , Fósforo/metabolismo , Zea mays/genética , Zea mays/metabolismo , Fertilizantes , Produtos Agrícolas/genética , Agricultura/métodos , Solo/química , Fosfatos
4.
Plants (Basel) ; 11(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336681

RESUMO

Several maize breeding programs in India have developed numerous inbred lines but the lines have not been characterized using high-density molecular markers. Here, we studied the molecular diversity, population structure, and linkage disequilibrium (LD) patterns in a panel of 314 tropical normal corn, two sweet corn, and six popcorn inbred lines developed by 17 research centers in India, and 62 normal corn from the International Maize and Wheat Improvement Center (CIMMYT). The 384 inbred lines were genotyped with 60,227 polymorphic single nucleotide polymorphisms (SNPs). Most of the pair-wise relative kinship coefficients (58.5%) were equal or close to 0, which suggests the lack of redundancy in the genomic composition in the majority of inbred lines. Genetic distance among most pairs of lines (98.3%) varied from 0.20 to 0.34 as compared with just 1.7% of the pairs of lines that differed by <0.20, which suggests greater genetic variation even among sister lines. The overall average of 17% heterogeneity was observed in the panel indicated the need for further inbreeding in the high heterogeneous genotypes. The mean nucleotide diversity and frequency of polymorphic sites observed in the panel were 0.28 and 0.02, respectively. The model-based population structure, principal component analysis, and phylogenetic analysis revealed three to six groups with no clear patterns of clustering by centers-wise breeding lines, types of corn, kernel characteristics, maturity, plant height, and ear placement. However, genotypes were grouped partially based on their source germplasm from where they derived.

5.
Sci Rep ; 12(1): 4211, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273237

RESUMO

Maize is a heavy consumer of fertilizer nitrogen (N) which not only results in the high cost of cultivation but may also lead to environmental pollution. Therefore, there is a need to develop N-use efficient genotypes, a prerequisite for which is a greater understanding of N-deficiency stress adaptation. In this study, comparative transcriptome analysis was performed using leaf and root tissues from contrasting inbred lines, viz., DMI 56 (tolerant to N stress) and DMI 81 (susceptible to N stress) to delineate the differentially expressed genes (DEGs) under low-N stress. The contrasting lines were grown hydroponically in modified Hoagland solution having either sufficient- or deficient-N, followed by high-throughput RNA-sequencing. A total of 8 sequencing libraries were prepared and 88-97% of the sequenced raw reads were mapped to the reference B73 maize genome. Genes with a p value ≤ 0.05 and fold change of ≥ 2.0 or ≤ - 2 were considered as DEGs in various combinations performed between susceptible and tolerant genotypes. DEGs were further classified into different functional categories and pathways according to their putative functions. Gene Ontology based annotation of these DEGs identified three different functional categories: biological processes, molecular function, and cellular component. The KEGG and Mapman based analysis revealed that most of the DEGs fall into various metabolic pathways, biosynthesis of secondary metabolites, signal transduction, amino acid metabolism, N-assimilation and metabolism, and starch metabolism. Some of the key genes involved in N uptake (high-affinity nitrate transporter 2.2 and 2.5), N assimilation and metabolism (glutamine synthetase, asparagine synthetase), redox homeostasis (SOD, POX), and transcription factors (MYB36, AP2-EREBP) were found to be highly expressed in the tolerant genotype compared to susceptible one. The candidate genes identified in the present study might be playing a pivotal role in low-N stress adaptation in maize and hence could be useful in augmenting further research on N metabolism and development of N-deficiency tolerant maize cultivars.


Assuntos
Nitrogênio , Zea mays , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Análise de Sequência de RNA/métodos , Estresse Fisiológico/genética , Transcriptoma
6.
Sci Rep ; 10(1): 16985, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046773

RESUMO

A novel microwave sensor with the mu-near-zero (MNZ) property is proposed for testing magnetodielectric material at 4.5 GHz. The sensor has a double-layer design consisting of a microstrip line and a metal strip with vias on layers 1 and 2, respectively. The proposed sensor can detect a unit change in relative permittivity and relative permeability with a difference in the operating frequency of 45 MHz and 78 MHz, respectively. The MNZ sensor is fabricated and assembled on two layers of Taconic RF-35 substrate, with thicknesses of 0.51 mm and 1.52 mm, respectively, for the measurement of the sample under test using a vector network analyzer. The dielectric and magnetic properties of two standard dielectric materials (Taconic CER-10 and Rogers TMM13i) and of yttrium-gadolinium iron garnet are measured at microwave frequencies. The results are found to be in good agreement with the values available in the literature, which shows the applicability of the prototype for sensing of magnetodielectric materials.

7.
Planta ; 251(4): 91, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32236850

RESUMO

MAIN CONCLUSION: While transgenic technology has heralded a new era in crop improvement, several concerns have precluded their widespread acceptance. Alternative technologies, such as cisgenesis and genome-editing may address many of such issues and facilitate the development of genetically engineered crop varieties with multiple favourable traits. Genetic engineering and plant transformation have played a pivotal role in crop improvement via introducing beneficial foreign gene(s) or silencing the expression of endogenous gene(s) in crop plants. Genetically modified crops possess one or more useful traits, such as, herbicide tolerance, insect resistance, abiotic stress tolerance, disease resistance, and nutritional improvement. To date, nearly 525 different transgenic events in 32 crops have been approved for cultivation in different parts of the world. The adoption of transgenic technology has been shown to increase crop yields, reduce pesticide and insecticide use, reduce CO2 emissions, and decrease the cost of crop production. However, widespread adoption of transgenic crops carrying foreign genes faces roadblocks due to concerns of potential toxicity and allergenicity to human beings, potential environmental risks, such as chances of gene flow, adverse effects on non-target organisms, evolution of resistance in weeds and insects etc. These concerns have prompted the adoption of alternative technologies like cisgenesis, intragenesis, and most recently, genome editing. Some of these alternative technologies can be utilized to develop crop plants that are free from any foreign gene hence, it is expected that such crops might achieve higher consumer acceptance as compared to the transgenic crops and would get faster regulatory approvals. In this review, we present a comprehensive update on the current status of the genetically modified (GM) crops under cultivation. We also discuss the issues affecting widespread adoption of transgenic GM crops and comment upon the recent tools and techniques developed to address some of these concerns.


Assuntos
Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética , Animais , Resistência à Doença/genética , Edição de Genes , Fluxo Gênico , Engenharia Genética/métodos , Resistência a Herbicidas/genética , Insetos , Nutrientes , Plantas Daninhas , Estresse Fisiológico/genética
8.
Rev Sci Instrum ; 86(6): 064708, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26144529

RESUMO

A generalized cavity method relaxing the major assumptions of conventional cavity perturbation technique is presented for characterization of the powdered sample in the microwave frequency range. The unified method, which is based on the inverse optimization technique, eliminates the complexity of measurement caused due to the existence of sample holder and produces an accurate result. In this paper, an attractive numerical calibration approach is proposed in lieu of the practical calibration technique which usually requires either a set of standards or a number of reference samples. The sample holder especially made of borosilicate glass is designed to contain the powdered samples, and the X-band rectangular cavity is fabricated. For verification of the proposed technique, the pulverized alumina and polyethylene oxide with various packing fractions are measured using the fabricated cavity and the vector network analyzer. The dielectric constant of these samples is extracted using the proposed unified approach which is found to be in good agreement with the theoretical data obtained by Landau-Lifshitz and Looyenga model. The accuracy of the proposed generalized cavity method for powdered samples is found to be better than the conventional resonator methods available in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...