Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mamm Genome ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594551

RESUMO

Autism spectrum disorder (ASD) is a heterogenous neurodevelopmental disorder marked by functional abnormalities in brain that causes social and linguistic difficulties. The incidence of ASD is more prevalent in males compared to females, but the underlying mechanism, as well as molecular indications for identifying sex-specific differences in ASD symptoms remain unknown. Thus, impacting the development of personalized strategy towards pharmacotherapy of ASD. The current study employs an integrated bioinformatic approach to investigate the genes and pathways uniquely associated with sex specific differences in autistic individuals. Based on microarray dataset (GSE6575) extracted from the gene expression omnibus, the dysregulated genes between the autistic and the neurotypical individuals for both sexes were identified. Gene set enrichment analysis was performed to ascertain biological activities linked to the dysregulated genes. Protein-protein interaction network analysis was carried out to identify hub genes. The identified hub genes were examined to determine their functions and involvement in the associated pathways using Enrichr. Additionally, hub genes were validated from autism-associated databases and the potential small molecules targeting the hub genes were identified. The present study utilized whole blood transcriptomic gene expression analysis data and identified 2211 and 958 differentially expressed unique genes in males and females respectively. The functional enrichment analysis revealed that male hub genes were functionally associated with RNA polymerase II mediated transcriptional regulation whereas female hub genes were involved in intracellular signal transduction and cell migration. The top male hub genes exhibited functional enrichment in tyrosine kinase signalling pathway. The pathway enrichment analysis of male hub genes indicates the enrichment of papillomavirus infection. Female hub genes were enriched in androgen receptor signalling pathway and functionally enriched in focal adhesion specific excision repair. Identified drug like candidates targeting these genes may serve as a potential sex specific therapeutics. Wortmannin for males, 5-Fluorouracil for females had the highest scores. Targeted and sex-specific pharmacotherapies may be created for the management of ASD. The current investigation identifies sex-specific molecular signatures derived from whole blood which may serve as a potential peripheral sex-specific biomarkers for ASD. The study also uncovers the possible pharmacological interventions against the selected genes/pathway, providing support in development of therapeutic strategies to mitigate ASD. However, experimental proofs on biological systems are warranted.

2.
Circulation ; 148(19): 1459-1478, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37850387

RESUMO

BACKGROUND: Interferon-γ (IFNγ) signaling plays a complex role in atherogenesis. IFNγ stimulation of macrophages permits in vitro exploration of proinflammatory mechanisms and the development of novel immune therapies. We hypothesized that the study of macrophage subpopulations could lead to anti-inflammatory interventions. METHODS: Primary human macrophages activated by IFNγ (M(IFNγ)) underwent analyses by single-cell RNA sequencing, time-course cell-cluster proteomics, metabolite consumption, immunoassays, and functional tests (phagocytic, efferocytotic, and chemotactic). RNA-sequencing data were analyzed in LINCS (Library of Integrated Network-Based Cellular Signatures) to identify compounds targeting M(IFNγ) subpopulations. The effect of compound BI-2536 was tested in human macrophages in vitro and in a murine model of atherosclerosis. RESULTS: Single-cell RNA sequencing identified 2 major clusters in M(IFNγ): inflammatory (M(IFNγ)i) and phagocytic (M(IFNγ)p). M(IFNγ)i had elevated expression of inflammatory chemokines and higher amino acid consumption compared with M(IFNγ)p. M(IFNγ)p were more phagocytotic and chemotactic with higher Krebs cycle activity and less glycolysis than M(IFNγ)i. Human carotid atherosclerotic plaques contained 2 such macrophage clusters. Bioinformatic LINCS analysis using our RNA-sequencing data identified BI-2536 as a potential compound to decrease the M(IFNγ)i subpopulation. BI-2536 in vitro decreased inflammatory chemokine expression and secretion in M(IFNγ) by shrinking the M(IFNγ)i subpopulation while expanding the M(IFNγ)p subpopulation. BI-2536 in vivo shifted the phenotype of macrophages, modulated inflammation, and decreased atherosclerosis and calcification. CONCLUSIONS: We characterized 2 clusters of macrophages in atherosclerosis and combined our cellular data with a cell-signature drug library to identify a novel compound that targets a subset of macrophages in atherosclerosis. Our approach is a precision medicine strategy to identify new drugs that target atherosclerosis and other inflammatory diseases.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Animais , Camundongos , Redes Reguladoras de Genes , Macrófagos/metabolismo , Aterosclerose/genética , Placa Aterosclerótica/metabolismo , RNA/metabolismo , Biologia
3.
Thromb Res ; 215: 5-13, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35580466

RESUMO

BACKGROUND: DNA methylation regulates gene expression by inhibiting transcription factor binding to promoter and regulatory regions. Acute hypoxia during altitude exposure is associated with decreased natural anticoagulants and morbid thrombotic events. Thrombomodulin (TM) is a high affinity thrombin binding receptor protein, vital for vascular homeostasis. The purpose of this study is to determine gene expression regulation via methylation of TM gene in high altitude hypoxia induced deep vein thrombosis (DVT) patients. MATERIALS AND RESULTS: Percent 5-methyl cytosine analysis showed increased methylation in high altitude DVT patients (HAP) as compared to high altitude control (HAC) and seal level control (Control) subjects, while TM protein and mRNA levels were decreased in high altitude DVT patients as compared to other two groups. Bisulfite sequencing analysis indicated increased methylation in TM promoter in high altitude DVT patients compared to high altitude controls. Flow cytometry analysis showed decreased TM expression in hypoxia induced primary human umbilical vein endothelial cells (HUVECs). Treatment with specific DNA methyltransferase (DNMT) inhibitor-decitabine during hypoxia, restored TM expression. in vitro global methylation assay showed increased methylation in hypoxia group. Specific concentration of decitabine in hypoxia decreased global methylation showing a direct correlation between DNMTs and methylation. Selective dose of decitabine restored TM levels in HUVECs. DNMT1 and DNMT3B proteins showed to mediate the overall expression of TM. CONCLUSION: TM emerged as a potential candidate for methylation in high altitude DVT patients, regulated by hypoxia-induced epigenetic mechanism. Hypoxia culminates in methylation of DNA sequences in the promoter region of TM gene and increased the expression of DNMT1 and DNMT3B per se in primary HUVECs. Critical DNA methylation events were found to be compromised in high altitude DVT patients.


Assuntos
Metilação de DNA , Trombomodulina/genética , Trombose Venosa , Altitude , Decitabina/administração & dosagem , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipóxia/metabolismo , Regiões Promotoras Genéticas , Trombose Venosa/genética
4.
Genes (Basel) ; 12(2)2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669862

RESUMO

This study aims to identify the clinical and genetic markers related to the two uncommon nutritional statuses-metabolically unhealthy normal-weight (MUNW) and metabolically healthy overweight/obese (MHOW) individuals in the physically active individuals. Physically active male volunteers (n = 120) were recruited, and plasma samples were analyzed for the clinical parameters. Triglycerides, HDL-Cholesterol, LDL-cholesterol, total cholesterol, C-reactive protein, and insulin resistance were considered as markers of metabolic syndrome. The subjects were classified as 'healthy' (0 metabolic abnormalities) or 'unhealthy' (≥1 metabolic abnormalities) in their respective BMI group with a cut-off at 24.9 kg/m2. Analysis of biochemical variables was done using enzyme linked immunosorbent assay (ELISA) kits with further confirmation using western blot analysis. The microarray was conducted, followed by quantitative real-time PCR to identify and analyze differentially expressed genes (DEGs). The MHOW group constituted 12.6%, while the MUNW group constituted 32.4% of the total study population. Pro-inflammatory markers like interleukin-6, tumor necrosis factor (TNF)-α, and ferritin were increased in metabolically unhealthy groups in comparison to metabolically healthy groups. Gene expression profiling of MUNW and MHOW individuals resulted in differential expression of 7470 and 5864 genes, respectively. The gene ontology (GO) biological pathway analysis showed significant enrichment of the 'JAK/STAT signaling pathway' in MUNW and 'The information-processing pathway at the IFN-ß enhancer' pathway in MHOW. The G6PC3 gene has genetically emerged as a new distinct gene showing its involvement in insulin resistance. Biochemical, as well as genetic analysis, revealed that MUNW and MHOW are the transition state between healthy and obese individuals with simply having fewer metabolic abnormalities. Moreover, it is possible that the state of obesity is a biological adaptation to cope up with the unhealthy parameters.


Assuntos
Predisposição Genética para Doença , Glucose-6-Fosfatase/genética , Resistência à Insulina/genética , Síndrome Metabólica/genética , Obesidade/genética , Adulto , Biomarcadores/metabolismo , Índice de Massa Corporal , Proteína C-Reativa/genética , Feminino , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Interferon beta/genética , Masculino , Síndrome Metabólica/patologia , Obesidade/patologia , Sobrepeso/genética , Sobrepeso/patologia , Fenótipo , Medição de Risco , Fatores de Risco , Transdução de Sinais/genética
5.
Thromb Haemost ; 121(11): 1497-1511, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33580494

RESUMO

BACKGROUND: The pathophysiology of deep vein thrombosis (DVT) is considered as multifactorial, where thrombus formation is an interplay of genetic and acquired risk factors. Little is known about the expression profile and roles of long noncoding RNAs (lncRNAs) in human subjects developing DVT at high altitude. METHODS: Using RNAseQ, we compared peripheral blood mRNA and lncRNA expression profile in human high-altitude DVT (HA-DVT) patients with high-altitude control subjects. We used DESeq to identify differentially expressed (DE) genes. We annotated the lncRNAs using NONCODE 3.0 database. In silico putative lncRNA-miRNA association study unravels the endogenous miRNA sponge associated with our candidate lncRNAs. These findings were validated by small-interfering RNA (siRNA) knockdown assay of the candidate lncRNAs conducted in primary endothelial cells. RESULTS: We identified 1,524 DE mRNAs and 973 DE lncRNAs. Co-expressed protein-coding gene analysis resulted in a list of 722 co-expressed protein-coding genes with a Pearson correlation coefficients >0.7. The functional annotation of co-expressed genes and putative proteins revealed their involvement in the hypoxia, immune response, and coagulation cascade. Through its miRNA response elements to compete for miR-143 and miR-15, lncRNA-LINC00659 and UXT-AS1 regulate the expression of prothrombotic genes. Furthermore, in vitro RNA interference (siRNA) simultaneously suppressed lncRNAs and target gene mRNA level. CONCLUSION: This transcriptome profile describes novel potential mechanisms of interaction between lncRNAs, the coding genes, miRNAs, and regulatory transcription factors that define the thrombotic signature and may be used in establishing lncRNAs as a biomarker in HA-DVT.


Assuntos
Altitude , Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , Transcriptoma , Trombose Venosa/genética , Adulto , Hipóxia Celular , Células Cultivadas , Bases de Dados Genéticas , Células Endoteliais/metabolismo , Redes Reguladoras de Genes , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/sangue , RNA-Seq , Trombose Venosa/sangue , Trombose Venosa/diagnóstico
6.
Front Cardiovasc Med ; 7: 623012, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33521069

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative virus for the current global pandemic known as coronavirus disease 2019 (COVID-19). SARS-CoV-2 belongs to the family of single-stranded RNA viruses known as coronaviruses, including the MERS-CoV and SARS-CoV that cause Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS), respectively. These coronaviruses are associated in the way that they cause mild to severe upper respiratory tract illness. This study has used an unbiased analysis of publicly available gene expression datasets from Gene Expression Omnibus to understand the shared and unique transcriptional signatures of human lung epithelial cells infected with SARS-CoV-2 relative to MERS-CoV or SARS-CoV. A major goal was to discover unique cellular responses to SARS-CoV-2 among these three coronaviruses. Analyzing differentially expressed genes (DEGs) shared by the three datasets led to a set of 17 genes, suggesting the lower expression of genes related to acute inflammatory response (TNF, IL32, IL1A, CXCL1, and CXCL3) in SARS-CoV-2. This subdued transcriptional response to SARS-CoV-2 may cause prolonged viral replication, leading to severe lung damage. Downstream analysis of unique DEGs of SARS-CoV-2 infection revealed changes in genes related to apoptosis (NRP1, FOXO1, TP53INP1, CSF2, and NLRP1), coagulation (F3, PROS1, ITGB3, and TFPI2), and vascular function (VAV3, TYMP, TCF4, and NR2F2), which may contribute to more systemic cardiovascular complications of COVID-19 than MERS and SARS. The study has uncovered a novel set of transcriptomic signatures unique to SARS-CoV-2 infection and shared by three coronaviruses, which may guide the initial efforts in the development of prognostic or therapeutic tools for COVID-19.

7.
Sci Rep ; 9(1): 4815, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894555

RESUMO

MicroRNAs (miRNAs) are involved in a wide variety of cellular processes and post-transcriptionally regulate several mechanism and diseases. However, contribution of miRNAs functioning during hypoxia and DNA methylation together is less understood. The current study was aimed to find a shared miRNAs signature upstream to hypoxia (via HIF gene family members) and methylation (via DNMT gene family members). This was followed by the global validation of the hypoxia related miRNA signature using miRNA microarray meta-analysis of the hypoxia induced human samples. We further concluded the study by looking into thrombosis related terms and pathways enriched during protein-protein interaction (PPI) network analysis of these two sets of gene family. Network prioritization of these shared miRNAs reveals miR-129, miR-19band miR-23b as top regulatory miRNAs. A comprehensive meta-analysis of microarray datasets of hypoxia samples revealed 29 differentially expressed miRNAs. GSEA of the interacting genes in the DNMT-HIF PPI network indicated thrombosis associated pathways including "Hemostasis", "TPO signaling pathway" and "angiogenesis". Interestingly, the study has generated a novel database of candidate miRNA signatures shared between hypoxia and methylation, and their relation to thrombotic pathways, which might aid in the development of potential therapeutic biomarkers.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/genética , Trombose/genética , Biomarcadores/metabolismo , Biologia Computacional/métodos , Regulação para Baixo/genética , Perfilação da Expressão Gênica/métodos , Humanos , Análise em Microsséries/métodos , Mapas de Interação de Proteínas/genética , Transdução de Sinais/genética
8.
Thromb Haemost ; 118(7): 1279-1295, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29864786

RESUMO

Venous thromboembolism (VTE), a multi-factorial disease, is the third most common cardiovascular disease. Established genetic and acquired risk factors are responsible for the onset of VTE. High altitude (HA) also poses as an additional risk factor, predisposing individuals to VTE; however, its molecular mechanism remains elusive. This study aimed to identify genes/pathways associated with the pathophysiology of deep vein thrombosis (DVT) at HA. Gene expression profiling of DVT patients, who developed the disease, either at sea level or at HA-DVT locations, resulted in differential expression of 378 and 875 genes, respectively. Gene expression profiles were subjected to bioinformatic analysis, followed by technical and biological validation of selected genes using quantitative reverse transcription-polymerase chain reaction. Both gene ontology and pathway analysis showed enrichment of genes involved in haemostasis and platelet activation in HA-DVT patients with the most relevant pathway being 'response to hypoxia'. Thus, given the environmental condition the differential expression of hypoxia-responsive genes (angiogenin, ribonuclease, RNase A family, 5; early growth response 1; lamin A; matrix metallopeptidase 14 [membrane-inserted]; neurofibromin 1; PDZ and LIM domain 1; procollagen-lysine 1, 2-oxoglutarate 5-dioxygenase 1; solute carrier family 6 [neurotransmitter transporter, serotonin], member 4; solute carrier family 9 [sodium/hydrogen exchanger], member 1; and TEK tyrosine kinase, endothelial) in HA-DVT could be a determining factor to understand the pathophysiology of DVT at HA.


Assuntos
Altitude , Transtornos da Coagulação Sanguínea/genética , Coagulação Sanguínea/genética , Interação Gene-Ambiente , Hipóxia/genética , Trombose Venosa/genética , Adulto , Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/diagnóstico , Estudos de Casos e Controles , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Hipóxia/complicações , Hipóxia/diagnóstico , Masculino , Fenótipo , Medição de Risco , Fatores de Risco , Transcriptoma , Trombose Venosa/sangue , Trombose Venosa/diagnóstico
9.
EBioMedicine ; 26: 175-186, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29217135

RESUMO

Venous thromboembolism (VTE), the third leading cardiovascular complication, requires more understanding at molecular levels. Here, we have identified miR-145 as a key molecule for regulating thrombus formation in venous thrombosis (VT) employing network based bioinformatics approach and in vivo experiments. Levels of miR-145 showed an inverse correlation with thrombus load determined by coagulation variables. MiRNA target prediction tools and in vitro study identified tissue factor (TF) as a target gene for miR-145. The restoration of miR-145 levels in thrombotic animals via in vivo miR-145 mimic delivery resulted in decreased TF level and activity, accompanied by reduced thrombogenesis. MiR-145 levels were also reduced in VT patients and correlated with increased TF levels in patients, thereby, confirming our preclinical findings. Our study identifies a previously undescribed role of miRNA in VT by regulating TF expression. Therefore, restoration of miR-145 levels may serve as a promising therapeutic strategy for management of VT.


Assuntos
MicroRNAs/genética , Tromboplastina/genética , Trombose/genética , Trombose Venosa/genética , Animais , Coagulação Sanguínea/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Ratos , Trombose/fisiopatologia , Tromboembolia Venosa/genética , Tromboembolia Venosa/patologia , Trombose Venosa/fisiopatologia
10.
J Neuroinflammation ; 14(1): 222, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141671

RESUMO

BACKGROUND: Sleep deprivation (SD) leads to cognitive impairment. Neuroinflammation could be a significant contributing factor in the same. An increase in regional brain pro-inflammatory cytokines induces cognitive deficits, however, the magnitude of the effect under SD is not apparent. It is plausible that microglia activation could be involved in the SD-induced cognitive impairment by modulation of neuronal cell proliferation, differentiation, and brain-derived neuronal factor (BDNF) level. The present study aimed to evaluate the possible beneficial effect of minocycline in amelioration of spatial memory decline during SD by its anti-inflammatory and neuroprotective actions. We scrutinized the effect of minocycline on the inflammatory cytokine levels associated with glial cells (microglia and astrocytes) activity and neurogenesis markers crucial for behavioral functions during SD. METHODS: Male Sprague-Dawley rats weighing 230-250 g were sleep deprived for 48 h using automated cage shaking apparatus. The spatial memory was tested using MWM apparatus immediately after completion of SD with and without minocycline. The animals were euthanized, blood was collected, and brain was extracted for neuroinflammation and neurogenesis studies. The set of experiments were also conducted with use of temozolomide, a neurogenesis blocker. RESULTS: Minocycline treatment increased the body weight, food intake, and spatial memory performance which declined during SD. It reduced the pro-inflammatory and increased the anti-inflammatory cytokine levels in hippocampus and plasma and inhibited the reactive gliosis in the hippocampus evidenced by improved cell count, morphology, and immunoreactivity. Additionally, minocycline administration promoted neurogenesis at different stages: proliferation (BrdU, Ki-67), differentiation (DCX) cells and growth factor (BDNF). However, no significant change was observed in maturation (NeuN) during SD. In addition, molecules related to behavior, inflammation, and neurogenesis were shown to be more affected after temozolomide administration during SD, and changes were restored with minocycline treatment. We observed a significant correlation of neurogenesis with microglial activation, cytokine levels, and spatial memory during SD. CONCLUSION: The present study demonstrated that the SD-induced decline in spatial memory, neuronal cells proliferation, differentiation, and BDNF level could be attributed to upregulation of neuroinflammatory molecules, and minocycline may be an effective intervention to counteract these changes. Microglial activation is involved in SD-induced changes in inflammatory molecules, neurogenesis, and spatial memory.


Assuntos
Hipocampo/imunologia , Microglia/patologia , Neurogênese/imunologia , Privação do Sono/complicações , Memória Espacial/fisiologia , Animais , Transtornos Cognitivos/imunologia , Proteína Duplacortina , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto , Microglia/imunologia , Ratos , Ratos Sprague-Dawley , Privação do Sono/imunologia
11.
Sci Rep ; 6: 37099, 2016 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-27892526

RESUMO

Thrombosis is a leading cause of morbidity and mortality in patients with myeloproliferative disorders (MPDs), particularly polycythemia vera (PV) and essential thrombocythemia (ET). Despite the attempts to establish a link between them, the shared biological mechanisms are yet to be characterized. An integrated gene expression meta-analysis of five independent publicly available microarray data of the three diseases was conducted to identify shared gene expression signatures and overlapping biological processes. Using INMEX bioinformatic tool, based on combined Effect Size (ES) approaches, we identified a total of 1,157 differentially expressed genes (DEGs) (697 overexpressed and 460 underexpressed genes) shared between the three diseases. EnrichR tool's rich library was used for comprehensive functional enrichment and pathway analysis which revealed "mRNA Splicing" and "SUMO E3 ligases SUMOylate target proteins" among the most enriched terms. Network based meta-analysis identified MYC and FN1 to be the most highly ranked hub genes. Our results reveal that the alterations in biomarkers of the coagulation cascade like F2R, PROS1, SELPLG and ITGB2 were common between the three diseases. Interestingly, the study has generated a novel database of candidate genetic markers, pathways and transcription factors shared between thrombosis and MPDs, which might aid in the development of prognostic therapeutic biomarkers.


Assuntos
Transtornos Mieloproliferativos/genética , Policitemia Vera/genética , Trombocitemia Essencial/genética , Transcriptoma , Biomarcadores/metabolismo , Bases de Dados Genéticas , Humanos , Análise em Microsséries , Transtornos Mieloproliferativos/complicações , Policitemia Vera/complicações , Trombocitemia Essencial/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...