Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38944415

RESUMO

Corynebacterium glutamicum ATCC 13032 is a promising microbial chassis for industrial production of valuable compounds, including aromatic amino acids derived from the shikimate pathway. In this work, we developed two whole-cell, transcription factor based fluorescent biosensors to track cis,cis-muconic acid (ccMA) and chorismate in C. glutamicum. Chorismate is a key intermediate in the shikimate pathway from which value-added chemicals can be produced, and a shunt from the shikimate pathway can divert carbon to ccMA, a high value chemical. We transferred a ccMA-inducible transcription factor, CatM, from Acinetobacter baylyi ADP1 into C. glutamicum and screened a promoter library to isolate variants with high sensitivity and dynamic range to ccMA by providing benzoate, which is converted to ccMA intracellularly. The biosensor also detected exogenously supplied ccMA, suggesting the presence of a putative ccMA transporter in C. glutamicum, though the external ccMA concentration threshold to elicit a response was 100-fold higher than the concentration of benzoate required to do so through intracellular ccMA production. We then developed a chorismate biosensor, in which a chorismate inducible promoter regulated by natively expressed QsuR was optimized to exhibit a dose-dependent response to exogenously supplemented quinate (a chorismate precursor). A chorismate-pyruvate lyase encoding gene, ubiC, was introduced into C. glutamicum to lower the intracellular chorismate pool, which resulted in loss of dose dependence to quinate. Further, a knockout strain that blocked the conversion of quinate to chorismate also resulted in absence of dose dependence to quinate, validating that the chorismate biosensor is specific to intracellular chorismate pool. The ccMA and chorismate biosensors were dually inserted into C. glutamicum to simultaneously detect intracellularly produced chorismate and ccMA. Biosensors, such as those developed in this study, can be applied in C. glutamicum for multiplex sensing to expedite pathway design and optimization through metabolic engineering in this promising chassis organism. ONE-SENTENCE SUMMARY: High-throughput screening of promoter libraries in Corynebacterium glutamicum to establish transcription factor based biosensors for key metabolic intermediates in shikimate and ß-ketoadipate pathways.


Assuntos
Técnicas Biossensoriais , Ácido Corísmico , Corynebacterium glutamicum , Ácido Sórbico , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Técnicas Biossensoriais/métodos , Ácido Sórbico/metabolismo , Ácido Sórbico/análogos & derivados , Ácido Corísmico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Acinetobacter/metabolismo , Acinetobacter/genética
2.
Front Bioeng Biotechnol ; 11: 1202388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545889

RESUMO

Targeted mutagenesis of a promoter or gene is essential for attaining new functions in microbial and protein engineering efforts. In the burgeoning field of synthetic biology, heterologous genes are expressed in new host organisms. Similarly, natural or designed proteins are mutagenized at targeted positions and screened for gain-of-function mutations. Here, we describe methods to attain complete randomization or controlled mutations in promoters or genes. Combinatorial libraries of one hundred thousands to tens of millions of variants can be created using commercially synthesized oligonucleotides, simply by performing two rounds of polymerase chain reactions. With a suitably engineered reporter in a whole cell, these libraries can be screened rapidly by performing fluorescence-activated cell sorting (FACS). Within a few rounds of positive and negative sorting based on the response from the reporter, the library can rapidly converge to a few optimal or extremely rare variants with desired phenotypes. Library construction, transformation and sequence verification takes 6-9 days and requires only basic molecular biology lab experience. Screening the library by FACS takes 3-5 days and requires training for the specific cytometer used. Further steps after sorting, including colony picking, sequencing, verification, and characterization of individual clones may take longer, depending on number of clones and required experiments.

3.
ACS Synth Biol ; 11(12): 3996-4008, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36472954

RESUMO

Whole-cell biosensors provide a convenient detection tool for the high-throughput screening of genetically engineered biocatalytic activity. But establishing a biosensor for an anthropogenic molecule requires both a custom transporter and a transcription factor. This results in an unavoidable "Catch-22" situation in which transporter activity cannot be easily confirmed without a biosensor and a biosensor cannot be established without a functional transporter in a host organism. We overcame this type of circular problem while developing an adipic acid (ADA) sensor. First, leveraging an established cis,cis-muconic acid (ccMA) sensor, an annotated ccMA transporter MucK, which is expected to be broadly responsive to dicarboxylates, was stably expressed in the genome of Pseudomonas putida to function as a transporter for ADA, and then a PcaR transcription factor (endogenous to the strain and naturally induced by ß-ketoadipic acid, BKA) was diversified and selected to detect the ADA molecule. While MucK expression is otherwise very unstable in P. putida under strong promoter expression, our optimized mucK expression was functional for over 70 generations without loss of function, and we selected an ADA sensor that showed a specificity switch of over 35-fold from BKA at low concentrations (typically <0.1 mM of inducers). Our ADA and BKA biosensors show high sensitivity (low detection concentration <10 µM) and dynamic range (∼50-fold) in an industrially relevant organism and will open new avenues for high throughput discovery and optimization of enzymes and metabolic pathways for the biomanufacture of these molecules. In particular, the novel ADA sensor will aid the discovery and evolution of efficient biocatalysts for the biological recycling of ADA from the degradation of nylon-6,6 waste.


Assuntos
Técnicas Biossensoriais , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Técnicas Biossensoriais/métodos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
4.
PLoS One ; 17(11): e0277670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36395154

RESUMO

The ability of Mycobacterium tuberculosis (Mtb) to persist in its host may enable an evolutionary advantage for drug resistant variants to emerge. A potential strategy to prevent persistence and gain drug efficacy is to directly target the activity of enzymes that are crucial for persistence. We present a method for expedited discovery and structure-based design of lead compounds by targeting the hypoxia-associated enzyme L-alanine dehydrogenase (AlaDH). Biochemical and structural analyses of AlaDH confirmed binding of nucleoside derivatives and showed a site adjacent to the nucleoside binding pocket that can confer specificity to putative inhibitors. Using a combination of dye-ligand affinity chromatography, enzyme kinetics and protein crystallographic studies, we show the development and validation of drug prototypes. Crystal structures of AlaDH-inhibitor complexes with variations at the N6 position of the adenyl-moiety of the inhibitor provide insight into the molecular basis for the specificity of these compounds. We describe a drug-designing pipeline that aims to block Mtb to proliferate upon re-oxygenation by specifically blocking NAD accessibility to AlaDH. The collective approach to drug discovery was further evaluated through in silico analyses providing additional insight into an efficient drug development strategy that can be further assessed with the incorporation of in vivo studies.


Assuntos
Alanina Desidrogenase , Mycobacterium tuberculosis , Alanina Desidrogenase/metabolismo , Mycobacterium tuberculosis/metabolismo , Nucleosídeos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Descoberta de Drogas
6.
PLoS One ; 16(11): e0259705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34731214

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0257905.].

7.
PLoS One ; 16(9): e0257905, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34582502

RESUMO

SARS-CoV-2 virus, the causative agent of Covid-19, has fired up a global pandemic. The virus interacts with the human receptor angiotensin-converting enzyme 2 (ACE2) for an invasion via receptor binding domain (RBD) on its spike protein. To provide a deeper understanding of this interaction, we performed microsecond simulations of the RBD-ACE2 complex for SARS-CoV-2 and compared it with the closely related SARS-CoV discovered in 2003. We show residues in the RBD of SARS-CoV-2 that were mutated from SARS-CoV, collectively help make the RBD anchor much stronger to the N-terminal part of ACE2 than the corresponding residues on RBD of SARS-CoV. This would result in a reduced dissociation rate of SARS-CoV-2 from human receptor protein compared to SARS-CoV. The phenomenon was consistently observed in simulations beyond 500 ns and was reproducible across different force fields. Altogether, our study adds more insight into the critical dynamics of the key residues at the virus spike and human receptor binding interface and potentially aids the development of diagnostics and therapeutics to combat the pandemic efficiently.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Sítios de Ligação , COVID-19/genética , Humanos , Modelos Teóricos , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
8.
ACS Chem Biol ; 16(7): 1142-1146, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34152722

RESUMO

While natural protein-protein interactions have evolved to be induced by complex stimuli, rational design of interactions that can be switched-on-demand still remain challenging in the protein design world. Here, we demonstrate that a computationally redesigned natural interface for improved binding affinity could further be mutated to adopt a pH switchable interaction. The redesigned interface of Protein G/human IgG Fc domain (referred to as PrG/hIgG), when incorporated with histidine and glutamic acid on PrG (PrG-EHHE), showed a switch in binding affinity by 50-fold when the pH was altered from mild acidic to mild basic. The wild-type (WT) interface showed a negligible switch. The overall binding affinity under mild acidic pH for PrG-EHHE outperformed the wild-type PrG (PrG-WT) interaction. The new reagent PrG-EHHE can be revolutionary in IgG purification, since the standard method of using an extreme acidic pH for elution can be circumvented.


Assuntos
Proteínas de Bactérias/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ácido Glutâmico/química , Histidina/química , Humanos , Concentração de Íons de Hidrogênio , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/química , Mutação , Ligação Proteica , Domínios Proteicos , Engenharia de Proteínas , Streptococcus/química
9.
Metab Eng ; 62: 260-274, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32979486

RESUMO

Microbial terephthalic acid (TPA) catabolic pathways are conserved among the few bacteria known to turnover this xenobiotic aromatic compound. However, to date there are few reported cases in which this pathway has been successfully expressed in heterologous hosts to impart efficient utilization of TPA as a sole carbon source. In this work, we aimed to engineer TPA conversion in Acinetobacter baylyi ADP1 via the heterologous expression of catabolic and transporter genes from a native TPA-utilizing bacterium. Specifically, we obtained ADP1-derived strains capable of growing on TPA as the sole carbon source using chromosomal insertion and targeted amplification of the tph catabolic operon from Comamonas sp. E6. Adaptive laboratory evolution was then used to improve growth on this substrate. TPA consumption rates of the evolved strains, which retained multiple copies of the tph genes, were ~0.2 g/L/h (or ~1 g TPA/g cells/h), similar to that of Comamonas sp. E6 and almost 2-fold higher than that of Rhodococcus jostii RHA1, another native TPA-utilizing strain. To evaluate TPA transport in the evolved ADP1 strains, we engineered a TPA biosensor consisting of the transcription factor TphR and a fluorescent reporter. In combination with whole-genome sequencing, the TPA biosensor revealed that transport of TPA was not mediated by the heterologous proteins from Comamonas sp. E6. Instead, the endogenous ADP1 muconate transporter MucK, a member of the major facilitator superfamily, was responsible for TPA transport in several evolved strains in which MucK variants were found to enhance TPA uptake. Furthermore, the IclR-type transcriptional regulator DcaS was identified as a repressor of mucK expression. Overall, this work presents an unexpected function of a native protein identified through gene amplification, adaptive laboratory evolution, and a combination of screening methods. This study also provides a TPA biosensor for application in ADP1 and identifies transporter variants for use in metabolic engineering applications focused on plastic upcycling of polyesters.


Assuntos
Técnicas Biossensoriais , Amplificação de Genes , Acinetobacter , Laboratórios , Ácidos Ftálicos , Rhodococcus
10.
ACS Synth Biol ; 9(6): 1234-1239, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32369698

RESUMO

Enzyme engineering for gain of function requires navigating a large combinatorial sequence space efficiently. Typically, many mutations are needed to get significant improvements, while a single "bad" mutation can inactivate the enzyme. To establish high-throughput screening and achieve enhanced resolution between two variants, genetic libraries of the organophosphate hydrolase enzyme paraoxonase 1 (PON1) were rapidly screened via an engineered positive-feedback circuit: a p-nitrophenol (PNP)-specific transcription factor (TF) regulated expression of PON1, which catalyzed paraoxon breakdown and PNP production. Rare active mutant colonies, picked by simple visual fluorescence of a PON1-green fluorescent protein (GFP) fusion, were characterized. In a single screening round, high (library-scale) throughput enabled the discovery of enhanced paraoxon degradation activity in PON1, including structurally unexpected mutations.


Assuntos
Arildialquilfosfatase/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Animais , Arildialquilfosfatase/química , Arildialquilfosfatase/genética , Biocatálise , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Paraoxon/metabolismo
11.
Metab Eng ; 59: 64-75, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31931111

RESUMO

Pseudomonas putida KT2440 has received increasing attention as an important biocatalyst for the conversion of diverse carbon sources to multiple products, including the olefinic diacid, cis,cis-muconic acid (muconate). P. putida has been previously engineered to produce muconate from glucose; however, periplasmic oxidation of glucose causes substantial 2-ketogluconate accumulation, reducing product yield and selectivity. Deletion of the glucose dehydrogenase gene (gcd) prevents 2-ketogluconate accumulation, but dramatically slows growth and muconate production. In this work, we employed adaptive laboratory evolution to improve muconate production in strains incapable of producing 2-ketogluconate. Growth-based selection improved growth, but reduced muconate titer. A new muconate-responsive biosensor was therefore developed to enable muconate-based screening using fluorescence activated cell sorting. Sorted clones demonstrated both improved growth and muconate production. Mutations identified by whole genome resequencing of these isolates indicated that glucose metabolism may be dysregulated in strains lacking gcd. Using this information, we used targeted engineering to recapitulate improvements achieved by evolution. Deletion of the transcriptional repressor gene hexR improved strain growth and increased the muconate production rate, and the impact of this deletion was investigated using transcriptomics. The genes gntZ and gacS were also disrupted in several evolved clones, and deletion of these genes further improved strain growth and muconate production. Together, these targets provide a suite of modifications that improve glucose conversion to muconate by P. putida in the context of gcd deletion. Prior to this work, our engineered strain lacking gcd generated 7.0 g/L muconate at a productivity of 0.07 g/L/h and a 38% yield (mol/mol) in a fed-batch bioreactor. Here, the resulting strain with the deletion of hexR, gntZ, and gacS achieved 22.0 g/L at 0.21 g/L/h and a 35.6% yield (mol/mol) from glucose in similar conditions. These strategies enabled enhanced muconic acid production and may also improve production of other target molecules from glucose in P. putida.


Assuntos
Glucose/metabolismo , Engenharia Metabólica , Pseudomonas putida , Ácido Sórbico/análogos & derivados , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácido Sórbico/metabolismo
12.
ACS Synth Biol ; 8(4): 775-786, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30861344

RESUMO

Product inhibition is a frequent bottleneck in industrial enzymes, and testing mutations to alleviate product inhibition via traditional methods remains challenging as many variants need to be tested against multiple substrate and product concentrations. Further, traditional screening methods are conducted in vitro, and resulting enzyme variants may perform differently in vivo in the context of whole-cell metabolism and regulation. In this study, we address these two problems by establishing a high-throughput screening method to alleviate product inhibition in an industrially relevant enzyme, chorismate pyruvate-lyase (UbiC). First, we engineered a highly specific, genetically encoded biosensor for 4-hydroxybenzoate (4HB) in an industrially relevant host, Pseudomonas putida KT2440. We subsequently applied the biosensor to detect the activity of a heterologously expressed UbiC that converts chorismate into 4HB and pyruvate. By using benzoate as a product surrogate that inhibits UbiC without activating the biosensor, we were able to efficiently create and screen a diversified library for UbiC variants with reduced product inhibition. Introduction of the improved UbiC enzyme variant into an experimental production strain for the industrial precursor cis,cis-muconic acid (muconate), enabled a >2-fold yield improvement for glucose to muconate conversion when the new UbiC variant was expressed from a plasmid and a 60% yield increase when the same UbiC variant was genomically integrated into the strain. Overall, this work demonstrates that by coupling a library of enzyme variants to whole-cell catalysis and biosensing, variants with reduced product inhibition can be identified, and that this improved enzyme can result in increased titers of a downstream molecule of interest.


Assuntos
Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Técnicas Biossensoriais/métodos , Catálise , Clonagem Molecular/métodos , Glucose/genética , Glucose/metabolismo , Parabenos/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Ácido Sórbico/análogos & derivados , Ácido Sórbico/metabolismo
13.
Metab Eng Commun ; 6: 33-38, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29765865

RESUMO

Robust fluorescence-based biosensors are emerging as critical tools for high-throughput strain improvement in synthetic biology. Many biosensors are developed in model organisms where sophisticated synthetic biology tools are also well established. However, industrial biochemical production often employs microbes with phenotypes that are advantageous for a target process, and biosensors may fail to directly transition outside the host in which they are developed. In particular, losses in sensitivity and dynamic range of sensing often occur, limiting the application of a biosensor across hosts. Here we demonstrate the optimization of an Escherichia coli-based biosensor in a robust microbial strain for the catabolism of aromatic compounds, Pseudomonas putida KT2440, through a generalizable approach of modulating interactions at the protein-DNA interface in the promoter and the protein-protein dimer interface. The high-throughput biosensor optimization approach demonstrated here is readily applicable towards other allosteric regulators.

14.
ACS Synth Biol ; 6(1): 120-129, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27548779

RESUMO

Thermostabilization of an enzyme with complete retention of catalytic efficiency was demonstrated on recombinant 3-dehydroshikimate dehydratase (DHSase or wtAsbF) from Bacillus thuringiensis serovar konkukian 97-27 (hereafter, B. thuringiensis 97-27). The wtAsbF is relatively unstable at 37 °C, in vitro (t1/237 = 15 min), in the absence of divalent metal. We adopted a structure-based design to identify stabilizing mutations and created a combinatorial library based upon predicted mutations at specific locations on the enzyme surface. A diversified asbF library (∼2000 variants) was expressed in E. coli harboring a green fluorescent protein (GFP) reporter system linked to the product of wtAsbF activity (3,4-dihydroxybenzoate, DHB). Mutations detrimental to DHSase function were rapidly eliminated using a high throughput fluorescence activated cell sorting (FACS) approach. After a single sorting round and heat screen at 50 °C, a triple AsbF mutant (Mut1), T61N, H135Y, and H257P, was isolated and characterized. The half-life of Mut1 at 37 °C was >10-fold higher than the wtAsbF (t1/237 = 169 min). Further, the second-order rate constants for both wtAsbF and Mut1 were approximately equal (9.9 × 105 M-1 s-1, 7.8 × 105 M-1 s-1, respectively), thus demonstrating protein thermostability did not come at the expense of enzyme thermophilicity. In addition, in vivo overexpression of Mut1 in E. coli resulted in a ∼60-fold increase in functional enzyme when compared to the wild-type enzyme under the identical expression conditions. Finally, overexpression of the thermostable AsbF resulted in an approximate 80-120% increase in DHB accumulation in the media relative to the wild-type enzyme.


Assuntos
Bacillus thuringiensis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Hidroliases/química , Hidroliases/metabolismo , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Estabilidade Enzimática/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Biblioteca Genômica , Ensaios de Triagem em Larga Escala , Hidroliases/genética , Cinética , Mutação , Conformação Proteica , Engenharia de Proteínas , Sorogrupo , Biologia Sintética , Temperatura
15.
Nucleic Acids Res ; 44(17): 8490-500, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27536006

RESUMO

A whole-cell biosensor utilizing a transcription factor (TF) is an effective tool for sensitive and selective detection of specialty chemicals or anthropogenic molecules, but requires access to an expanded repertoire of TFs. Using homology modeling and ligand docking for binding pocket identification, assisted by conservative mutations in the pocket, we engineered a novel specificity in an Acinetobacter TF, PobR, to 'sense' a chemical p-nitrophenol (pNP) and measured the response via a fluorescent protein reporter expressed from a PobR promoter. Out of 10(7) variants of PobR, four were active when dosed with pNP, with two mutants showing a specificity switch from the native effector 4-hydroxybenzoate (4HB). One of the mutants, pNPmut1 was then used to create a smart microbial cell responding to pNP production from hydrolysis of an insecticide, paraoxon, in a coupled assay involving phosphotriesterase (PTE) enzyme expressed from a separate promoter. We show the fluorescence of the cells correlated with the catalytic efficiency of the PTE variant expressed in each cell. High selectivity between similar molecules (4HB versus pNP), high sensitivity for pNP detection (∼2 µM) and agreement of apo- and holo-structures of PobR scaffold with predetermined computational models are other significant results presented in this work.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Organofosfatos/metabolismo , Engenharia de Proteínas , Fatores de Transcrição/metabolismo , Cristalografia por Raios X , Citometria de Fluxo , Hidrólise , Ligantes , Simulação de Acoplamento Molecular , Nitrofenóis/metabolismo , Organofosfatos/química , Paraoxon/metabolismo , Plasmídeos/metabolismo , Homologia Estrutural de Proteína , Fatores de Transcrição/química
16.
PLoS Genet ; 11(9): e1005469, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26397803

RESUMO

Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb), compact (∼ 40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two "red" RuBisCO activases that are shared across many algal lineages. The Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes.


Assuntos
Aptidão Genética , Genoma/genética , Haptófitas/genética , Ribulose-Bifosfato Carboxilase/genética , Sequência de Bases , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Filogenia , Análise de Sequência de DNA
17.
Proteins ; 83(7): 1327-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25974100

RESUMO

Structure-based rational mutagenesis for engineering protein functionality has been limited by the scarcity and difficulty of obtaining crystal structures of desired proteins. On the other hand, when high-throughput selection is possible, directed evolution-based approaches for gaining protein functionalities have been random and fortuitous with limited rationalization. We combine comparative modeling of dimer structures, ab initio loop reconstruction, and ligand docking to select positions for mutagenesis to create a library focused on the ligand-contacting residues. The rationally reduced library requirement enabled conservative control of the substitutions by oligonucleotide synthesis and bounding its size within practical transformation efficiencies (∼ 10(7) variants). This rational approach was successfully applied on an inducer-binding domain of an Acinetobacter transcription factor (TF), pobR, which shows high specificity for natural effector molecule, 4-hydroxy benzoate (4HB), but no native response to 3,4-dihydroxy benzoate (34DHB). Selection for mutants with high transcriptional induction by 34DHB was carried out at the single-cell level under flow cytometry (via green fluorescent protein expression under the control of pobR promoter). Critically, this selection protocol allows both selection for induction and rejection of constitutively active mutants. In addition to gain-of-function for 34DHB induction, the selected mutants also showed enhanced sensitivity and response for 4HB (native inducer) while no sensitivity was observed for a non-targeted but chemically similar molecule, 2-hydroxy benzoate (2HB). This is unique application of the Rosetta modeling protocols for library design to engineer a TF. Our approach extends applicability of the Rosetta redesign protocol into regimes without a priori precision structural information.


Assuntos
Proteínas de Bactérias/química , Mutação , Biblioteca de Peptídeos , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/química , Transativadores/química , Acinetobacter/química , Acinetobacter/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Parabenos/química , Parabenos/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ácido Salicílico/química , Ácido Salicílico/farmacologia , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica
18.
BMC Genomics ; 15: 604, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25034814

RESUMO

BACKGROUND: Haptophytes are widely and abundantly distributed in both marine and freshwater ecosystems. Few genomic analyses of representatives within this taxon have been reported, despite their early evolutionary origins and their prominent role in global carbon fixation. RESULTS: The complete mitochondrial and chloroplast genome sequences of the haptophyte Chrysochromulina tobin (Prymnesiales) provide insight into the architecture and gene content of haptophyte organellar genomes. The mitochondrial genome (~34 kb) encodes 21 protein coding genes and contains a complex, 9 kb tandem repeat region. Similar to other haptophytes and rhodophytes, but not cryptophytes or stramenopiles, the mitochondrial genome has lost the nad7, nad9 and nad11 genes. The ~105 kb chloroplast genome encodes 112 protein coding genes, including ycf39 which has strong structural homology to NADP-binding nitrate transcriptional regulators; a divergent 'CheY-like' two-component response regulator (ycf55) and Tic/Toc (ycf60 and ycf80) membrane transporters. Notably, a zinc finger domain has been identified in the rpl36 ribosomal protein gene of all chloroplasts sequenced to date with the exception of haptophytes and cryptophytes--algae that have gained (via lateral gene transfer) an alternative rpl36 lacking the zinc finger motif. The two C. tobin chloroplast ribosomal RNA operon spacer regions differ in tRNA content. Additionally, each ribosomal operon contains multiple single nucleotide polymorphisms (SNPs)--a pattern observed in rhodophytes and cryptophytes, but few stramenopiles. Analysis of small (<200 bp) chloroplast encoded tandem and inverted repeats in C. tobin and 78 other algal chloroplast genomes show that repeat type, size and location are correlated with gene identity and taxonomic clade. CONCLUSION: The Chrysochromulina tobin organellar genomes provide new insight into organellar function and evolution. These are the first organellar genomes to be determined for the prymnesiales, a taxon that is present in both oceanic and freshwater systems and represents major primary photosynthetic producers and contributors to global ecosystem stability.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Haptófitas/genética , Mapeamento Cromossômico , Sequência Conservada , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Fases de Leitura Aberta , Óperon , Filogenia , Sequências Repetitivas de Ácido Nucleico , Proteínas Ribossômicas/genética , Análise de Sequência de DNA , Transdução de Sinais , Homologia Estrutural de Proteína
19.
Nucleic Acids Res ; 42(12): 8150-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24861620

RESUMO

We created a single cell sorting system to screen for enzyme activity in Escherichia coli producing 3,4 dihydroxy benzoate (34DHB). To do so, we engineered a transcription factor regulon controlling the expression of green fluorescent protein (GFP) for induction by 34DHB. An autoregulated transcription factor, pcaU, was borrowed from Acinetobacter sp ADP1 to E. coli and its promoter region adapted for activity in E. Coli. The engineered pcaU regulon was inducible at >5 µM exogenous 34DHB, making it a sensitive biosensor for this industrially significant nylon precursor. Addition of a second plasmid provided IPTG inducible expression of dehydroshikimate dehydratase enzyme (AsbF), which converts endogenous dehydroshikimate to 34DHB. This system produced GFP fluorescence in an IPTG dose-dependent manner, and was easily detected in single cell on flow cytometer despite a moderate catalytic efficiency of AsbF. Using fluorescence-activated cell sorting (FACS), individual cells carrying the active AsbF could be isolated even when diluted into a decoy population of cells carrying a mutant (inactivated) AsbF variant at one part in a million. The same biosensor was also effective for further optimization of itself. FACS on E. coli carrying randomized loci in the promoter showed several variants with enhanced response to 34DHB.


Assuntos
Acinetobacter/genética , Técnicas Biossensoriais/métodos , Ensaios Enzimáticos/métodos , Escherichia coli/genética , Hidroxibenzoatos/metabolismo , Regulon , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Separação Celular , Citometria de Fluxo , Corantes Fluorescentes , Biblioteca Gênica , Genes Reporter , Engenharia Genética , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Hidroliases/genética , Hidroliases/metabolismo , Regiões Promotoras Genéticas , Transativadores/genética , Transativadores/metabolismo
20.
BMC Genomics ; 15: 212, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24646409

RESUMO

BACKGROUND: Microalgae in the genus Nannochloropsis are photosynthetic marine Eustigmatophytes of significant interest to the bioenergy and aquaculture sectors due to their ability to efficiently accumulate biomass and lipids for utilization in renewable transportation fuels, aquaculture feed, and other useful bioproducts. To better understand the genetic complement that drives the metabolic processes of these organisms, we present the assembly and comparative pangenomic analysis of the chloroplast and mitochondrial genomes from Nannochloropsis salina CCMP1776. RESULTS: The chloroplast and mitochondrial genomes of N. salina are 98.4% and 97% identical to their counterparts in Nannochloropsis gaditana. Comparison of the Nannochloropsis pangenome to other algae within and outside of the same phyla revealed regions of significant genetic divergence in key genes that encode proteins needed for regulation of branched chain amino synthesis (acetohydroxyacid synthase), carbon fixation (RuBisCO activase), energy conservation (ATP synthase), protein synthesis and homeostasis (Clp protease, ribosome). CONCLUSIONS: Many organellar gene modifications in Nannochloropsis are unique and deviate from conserved orthologs found across the tree of life. Implementation of secondary and tertiary structure prediction was crucial to functionally characterize many proteins and therefore should be implemented in automated annotation pipelines. The exceptional similarity of the N. salina and N. gaditana organellar genomes suggests that N. gaditana be reclassified as a strain of N. salina.


Assuntos
Genoma , Estramenópilas/genética , Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/genética , Complexos de ATP Sintetase/metabolismo , Sequência de Aminoácidos , Cloroplastos/genética , Genoma Mitocondrial , Mitocôndrias/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Família Multigênica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA