Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804491

RESUMO

The outstanding catalytic property of cerium oxide (CeO2) strongly depends on the polaron formation due to the oxygen vacancy (V̈O) defect and Ce4+ to Ce3+ transformation. Temperature plays an important role in the case of polaron generation in CeO2 and highly influences its electrical transport properties. Therefore, a much needed attention is required for detailed understanding of the effect of temperature on polaron formation and oxygen vacancy migration to get an idea about the improvement in the redox property of ceria. In this work, we have probed the generation of polarons in CeO2 thin-film deposited on a silicon (Si) substrate using the resonance photoemission spectroscopy (RPES) study. The RPES data show an increase in polaron density at the substrate-film interface of the thermally annealed film, indicating the formation of an interfacial Ce2O3 layer, which is, indeed, a phase change from the cubic to hexagonal structure. This leads to a modified electronic band structure, which has an impact on the capacitance-voltage (C-V) characteristics. This result nicely correlates the microscopic property of polarons and the macroscopic transport property of ceria.

2.
J Phys Chem Lett ; 14(48): 10832-10846, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38029290

RESUMO

Tandem hydrogenation vis-à-vis hydrogenolysis of xylose to 1,2-glycols remains a major challenge. Although one-pot conversion of xylose to 1,2-glycols requires stringent conditions, a sustainable approach would be quite noteworthy. We have developed a microwave route for the one-pot conversion of pentose (C5) and hexose (C6) sugars into glycol and hexitol, without pressurized hydrogen reactors. A pronounced hydrogenolysis of sugars to glycols is observed by Ru single atom (SA) on triphenylphosphine/phosphine oxide-modified silica (Ru@SiP), in contrast to Ru SA on pristine (Ru@SiC) and 3-aminopropyl-modified silica (Ru@SiN). A promising "ligand effect" was observed through phosphine modification of silica that presents a 70% overall yield of all reduced sugars (xylitol + glycols) from a 99% conversion of xylose with Ru@SiP. A theoretical study by DFT depicts an electronic effect on Ru-SA by triphenylphosphine that promotes the catalytic hydrogenolysis of sugars under mild conditions. Hence, this research represents an important step for glycols from biomass-derived sources.

3.
Phys Chem Chem Phys ; 25(32): 21479-21491, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37539659

RESUMO

In recent times, ultra-thin films of hafnium oxide (HfO2) have shown ferroelectricity (FE) attributed to the orthorhombic (o) phase of HfO2 with space group Pca21. This polar o-phase could be stabilized in the doped thin film of the oxide. In the present work, both polar and non-polar o-phases of HfO2 could be stabilized in Gd-doped bulk polycrystalline HfO2. Rietveld analysis of XRD data shows that the relative population of o-phases in the presence of the monoclinic (m) phase of HfO2 increases with increasing Gd-content. The local environment around the host atom has been investigated by time differential perturbed angular correlation (TDPAC) spectroscopy, synchrotron based X-ray near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) measurements showed a reduction in grain size with increasing Gd-dopant indicating a solute drag effect. It could be established that the segregation of the Gd-dopant in the grain boundary is a thermodynamically favorable process and the solute drag effect plays an important role in nucleation of the o-phase in bulk HfO2. Stabilization of Gd in both Pbca and Pca21 phases of HfO2 was supported by defect formation energy calculations using density functional theory (DFT). The present study has important implications in future applications of HfO2 in ferroelectric devices and in understanding the role of dopants in stabilizing the o-phase of HfO2 in the bulk.

4.
Sci Rep ; 13(1): 8579, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237016

RESUMO

The idea of strain based manipulation of spins in magnetic two-dimensional (2D) van der Waal (vdW) materials leads to the development of new generation spintronic devices. Magneto-strain arises in these materials due to the thermal fluctuations and magnetic interactions which influences both the lattice dynamics and the electronic bands. Here, we report the mechanism of magneto-strain effects in a vdW material CrGeTe[Formula: see text] across the ferromagnetic (FM) transition. We find an isostructural transition in CrGeTe[Formula: see text] across the FM ordering with first order type lattice modulation. Larger in-plane lattice contraction than out-of-plane give rise to magnetocrystalline anisotropy. The signature of magneto-strain effects in the electronic structure are shift of the bands away from the Fermi level, band broadening and the twinned bands in the FM phase. We find that the in-plane lattice contraction increases the on-site Coulomb correlation ([Formula: see text]) between Cr atoms resulting in the band shift. Out-of-plane lattice contraction enhances the [Formula: see text] hybridization between Cr-Ge and Cr-Te atoms which lead to band broadening and strong spin-orbit coupling (SOC) in FM phase. The interplay between [Formula: see text] and SOC out-of-plane gives rise to the twinned bands associated with the interlayer interactions while the in-plane interactions gives rise to the 2D spin polarized states in the FM phase.

5.
J Synchrotron Radiat ; 30(Pt 2): 449-456, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36891859

RESUMO

The feasibility of X-ray absorption fine-structure (XAFS) experiments of ultra-dilute metalloproteins under in vivo conditions (T = 300 K, pH = 7) at the BL-9 bending-magnet beamline (Indus-2) is reported, using as an example analogous synthetic Zn (0.1 mM) M1dr solution. The (Zn K-edge) XAFS of M1dr solution was measured with a four-element silicon drift detector. The first-shell fit was tested and found to be robust against statistical noise, generating reliable nearest-neighbor bond results. The results are found to be invariant between physiological and non-physiological conditions, which confirms the robust coordination chemistry of Zn with important biological implications. The scope of improving spectral quality for accommodation of higher-shell analysis is addressed.


Assuntos
Metaloproteínas , Síncrotrons , Metaloproteínas/química , Raios X , Radiografia , Índia
6.
Phys Chem Chem Phys ; 25(4): 3072-3082, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36620902

RESUMO

The optical performance of low-bilayer-thickness metallic multilayers (ML) can be improved significantly by limiting the intermixing of consecutive layers at the interfaces. Barrier layers are supposed to exhibit a decisive role in controlling diffusion across the interfaces. The element-specific grazing incidence extended X-ray absorption fine structure technique using synchrotron radiation has been used in conjunction with grazing incidence X-ray reflectivity and diffuse X-ray scattering measurements to study the impact of the two most common barrier layers, viz., C and B4C, at the interfaces of Cr/Sc MLs. The diffusion propagation is reduced by both the barrier layers; however, it is found that the improvement is more significant with the B4C barrier layer. It is seen that C forms an intermixed layer with Sc and leads to carbide formation at the interface, which then acts as shielding and prevents further interdiffusion, while B4C hardly penetrates into Sc and stops the overlap between Sc and Cr directly by wetting the corresponding interface. Thus, the above measurements reveal crucial and precise information regarding the elemental diffusion kinetics at the interfaces of Cr/Sc MLs in a non-destructive way, which is very important for technological applications of these MLs as X-ray optical devices.

7.
Phys Chem Chem Phys ; 24(30): 18255-18264, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35876232

RESUMO

Intrinsic defects created by chemically inert gas (Xe) ion implantation in vertically grown ZnO nanorods are studied by optical and X-ray absorption spectroscopy (XAS). The surface defects produced due to dynamic sputtering by ion beams control the fraction of O and Zn with ion fluence, which helps in tuning the optoelectronic properties. The forbidden Raman modes related to Zn interstitials and oxygen vacancies are observed because of the weak Fröhlich interaction, which arises due to disruption of the long-range lattice order. The evolution of the lattice disorder is identified by O K-edge and Zn K-edge scans of XAS. The hybridization strength between the O 2p and Zn 4p states increases with ion fluence and modulates the impact of intrinsic defects. The ion irradiation induced defects also construct intermediate defects bands which reduce the optical bandgap. Density functional theory (DFT) calculations are used to correlate the experimentally observed trend of bandgap narrowing with the origin of electronic states related to Zn interstitial and O vacancy defects within the forbidden energy gap in ZnO. Our finding can be beneficial to achieve enhanced conductivity in ZnO by accurately varying the intrinsic defects through ion irradiation, which may work as a tuning knob to control the optoelectronic properties of the system.

8.
J Phys Condens Matter ; 34(25)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35354127

RESUMO

Ferromagnetic insulators (FM-Is) are the materials of interest for the new generation quantum electronic applications. Here, we have investigated the physical observables depicting FM-I ground states in epitaxial Sm2NiMnO6(SNMO) double perovskite thin films fabricated under different conditions to realize the different level of Ni/Mn anti-site disorders (ASDs). The presence of ASDs immensely influence the characteristic magnetic and anisotropy behaviors in SNMO system by introducing short scale antiferromagnetic interactions in predominant long range FM ordered host matrix. Charge disproportion between cation sites, in the form of Ni2++ Mn4+→ Ni3++ Mn3+, causes mixed valency in both Ni and Mn species, which is found insensitive to ASD concentrations. Temperature dependent photo emission, photo absorption measurements duly combined with cluster model configuration interaction simulations, suggest that the eigenstates of Ni and Mn cations can be satisfactorily described as a linear combination of the unscreeneddnand screeneddn+1L̲(L̲: O 2phole) states. The electronic structure across the Fermi level (EF) exhibits closely spaced Ni 3d, Mn 3dand O 2pstates. From occupied and unoccupied bands, estimated values of the Coulomb repulsion energy (U) and ligand to metal charge transfer energy (Δ), indicate charge transfer insulating nature, where remarkable modification in Ni/Mn 3d-O 2phybridization takes place across the FM transition temperature. Existence of ASD broadens the Ni, Mn 3dspectral features, whereas the spectral positions are found to be unaltered. Hereby, present work demonstrates SNMO thin film as a FM-I system, where the FM state can be tuned by manipulating ASD in the crystal structure, while the I state remains intact.

9.
Phys Chem Chem Phys ; 24(7): 4415-4424, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35113109

RESUMO

The thin films of Ni and Bi are known to form NiBi3 and NiBi compounds spontaneously at the interface, which become superconducting below 4.2 K and show ferromagnetism either intrinsically or due to Ni impurities. Formation of NiBi3 and NiBi is a slow diffusion reaction, which means the local environment around Ni and Bi atoms may vary with time and temperature. In this report, we assess the feasibility of using X-ray Absorption Spectroscopy (XAS) as a tool to track the changes in local bonding environment in NiBi3 and NiBi. Thermal annealing at temperatures up to 500 °C was used to induce changes in the local environment in NiBi3 system. Consequent decomposition of NiBi3 into NiO and Bi has been tracked through changes in structural and magnetization behavior, which matched well with the findings of XAS. In addition, the magnetic hysteresis measurements indicated that NiO should be the dominant phase when NiBi3 is annealed at 500 °C. This was corroborated from XAS and was found to be >90%. The shift in K-edge of Ni in annealed samples was attributed to increasing charge state on Ni atom, which was ascertained by Bader charge analysis using Density Functional Theory (DFT). This study correlating macroscopic properties of NiBi3 with local bonding environment of the system indicates that XAS can be a very reliable tool for studying dynamics of diffusion in the NiBi3 system.

10.
Commun Chem ; 5(1): 165, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36697663

RESUMO

Conjugated polymers and titanium-based metal-organic framework (Ti-MOF) photocatalysts have demonstrated promising features for visible-light-driven hydrogen production. We report herein a strategy of anisotropic phenanthroline-based ruthenium polymers (PPDARs) over Ti-MOF, a tunable platform for efficient visible-light-driven photocatalytic hydrogen evolution reaction (HER). Several analytical methods including X-ray absorption spectroscopy (XAS) revealed the judicious integration of the surface-active polymer over the Ti-MOF reinforcing the catalytic activity over the broad chemical space. PPDAR-4 polyacrylate achitecture led to a substantial increase in the H2 evolution rate of 2438 µmolg-1h-1 (AQY: 5.33%) compared to pristine Ti-MOF (238 µmol g-1 h-1). The separation of photogenerated charge carriers at the PPDAR-4/Ti-MOF interface was confirmed by the optical and electrochemical investigations. The experimental, as well as theoretical data, revealed their physical and chemical properties which are positively correlated with the H2 generation rate. This offers a new avenue in creating polymer-based MOF robust photocatalysts for sustainable energy.

11.
Phys Chem Chem Phys ; 23(30): 16258-16267, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34309608

RESUMO

The recent observation of ferroelectricity in ultra thin films of hafnium oxide (HfO2) has been attributed to the orthorhombic (o) phase of HfO2 with space group Pca21. Although this oxide is polymorphic in nature, this polar o-phase is known to be stabilized in the doped thin film oxide. The objective of the present experiment is to stabilize the o-phases in La doped bulk polycrystalline HfO2 and investigate their evolution with the doping concentration through Time Differential Perturbed Angular Correlation (TDPAC), X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) measurements. The present work reports the presence of both the polar Pca21 phase and the antipolar Pbca phase at different La-concentrations. Two o-phases of HfO2 with space groups Pca21 and Pbca, difficult to distinguish by other complimentary methods, could be unambiguously identified by utilizing the atomic scale sensitivity of the electric field gradient (EFG) embedded in TDPAC spectroscopy. The determination of the oxidation state and the local environment of La-atoms by XANES and EXAFS measurements illuminates the microscopic role of the dopant in stabilizing the o-phase. The "solute drag model" proposes a critical crystallite size for the nucleation of the o-phase in bulk HfO2 and explains the role of the La-dopant in stabilizing the o-phase. Thus the present study shows the possibility of stabilizing the polar o-phase and hence attaining ferroelectricity in bulk HfO2 to augment the scope of future application for this ferroelectric device.

12.
J Synchrotron Radiat ; 28(Pt 2): 480-489, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650560

RESUMO

The germanium auto-diffusion effects on the inter-atomic distance between the nearest neighbors of the Ga atom in GaP epilayers are investigated using high-resolution X-ray diffraction (HRXRD) and X-ray absorption spectroscopy. The GaP layers grown on Ge (111) are structurally coherent and relaxed but they show the presence of residual strain which is attributed to the auto-diffusion of Ge from the results of secondary ion mass spectrometry and electrochemical capacitance voltage measurements. Subsequently, the inter-atomic distances between the nearest neighbors of Ga atom in GaP are determined from X-ray absorption fine-structure spectra performed at the Ga K-edge. The estimated local bond lengths of Ga with its first and second nearest neighbors show asymmetric variation for the in-plane and out-of-plane direction of GaP/Ge(111). The magnitude and direction of in-plane and out-of-plane microscopic residual strain present in the GaP/Ge are calculated from the difference in bond lengths which explains the presence of macroscopic residual tensile strain estimated from HRXRD. Modified nearest neighbor configurations of Ga in the auto-diffused GaP epilayer are proposed for new possibilities within the GaP/Ge hetero-structure, such as the conversion from indirect to direct band structures and engineering the tensile strain quantum dot structures on (111) surfaces.

13.
Phys Chem Chem Phys ; 23(10): 6051-6061, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33683228

RESUMO

The structural changes of Fe3O4 nanoparticle electrodes in Li ion batteries during charging-discharging cycles have been investigated using in situ X-ray absorption spectroscopy (XAS). Chemometric methods viz., Principal Component Analysis (PCA) and Multivariate Curve Resolution-Alternate Least Square (MCR-ALS) have been used for analysis of the in situ XANES data during the charge-discharge cycle, which help to identify the various species formed during the lithiation-delithiation of Fe3O4. The concentration variation of the different species has also been determined and the detailed intercalation-conversion mechanism of the Fe3O4 electrodes during the first discharge has been established. Subsequently, the first charge and second discharge cycles were also studied to apprehend the difference in redox reaction between the first discharge and subsequent cycles. The above studies clearly identify the four species involved in the whole intercalation-conversion process of Fe3O4 electrode of a Li ion battery and also indicate the irreversibility of the conversion reaction in subsequent cycles which may be one of the reasons for capacity fading of these electrodes. The above results have also been corroborated with density functional theory (DFT)based ab inito calculations.

14.
J Phys Condens Matter ; 33(19)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33556927

RESUMO

We investigate the evolution of the local structural parameters and their implication in unconventional superconductivity of 122 class of materials employing extended x-ray absorption fine structure studies. The spectral functions near the FeK- and AsK-absorption edges of CaFe2As2and its superconducting composition, CaFe1.9Co0.1As2(Tc= 12 K) exhibit evidence of enhancement of Fe contributions near the Fermi level with Co substitution, which becomes more prominent at low temperatures indicating enhanced role of Fe in the electronic properties with doping. As-Fe and Fe-Fe bondlengths derived from the experimental data reveal evolution with temperature across the magneto-structural transition in the parent compound. The evolution of these parameters in Co-doped superconducting composition is similar to its parent compound although no magneto-structural transition is observed in this system. These results reveal an evidence of doping induced evolution to the proximity to critical behavior and/or strong nematic fluctuations which might be important for superconductivity in this system.

15.
Sci Rep ; 10(1): 12030, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694707

RESUMO

Spin chiral systems with Dzyaloshinskii-Moriya (DM) interaction due to broken inversion symmetry are extensively studied for their technological applications in spintronics and thermoelectrics. Here, we report an experimental study on the magnetization, magnetoresistance (MR) and electronic structure of a non-centrosymmetric compound CrSi with B20 crystal structure. Both magnetization and MR shows competing ferromagnetic (FM) and antiferromagnetic (AFM) correlations with the FM correlations being comparatively weaker indicating the presence of DM interaction in CrSi. A large positive MR [Formula: see text] obtained at 5 K and 5 T magnetic field arises due to the stronger AFM correlations. Resonant photoemission shows both localized and itinerant nature of Cr 3d electrons to be present in CrSi and this is supported by the temperature dependence of magnetic susceptibility. Drastic variation in the density of states along with valence band broadening at low temperature indicates the increase in hybridization between Cr 3d and Si 3s-3p states which enhances the localization effects. Spin polarized itinerant Cr 3d electrons give rise to AFM spin density wave in CrSi. Magnetic interaction between the localized and itinerant Cr 3d electrons are found to be crucial for realizing DM interaction in this system. Spectral density of states derived from high resolution valence band measurements provides evidence of electronic topological transition in CrSi. Large density of polarized itinerant electrons which varies with temperature and the large positive MR with AFM correlations suggests CrSi as a potential candidate for both the thermoelectric and spintronics applications.

16.
J Synchrotron Radiat ; 27(Pt 4): 988-998, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566008

RESUMO

The static focusing optics of the existing energy-dispersive XAFS beamline BL-8 have been advantageously exploited to initiate diamond anvil cell based high-pressure XANES experiments at the Indus-2 synchrotron facility, India. In the framework of the limited photon statistics with the 2.5 GeV bending-magnet source, limited focusing optics and 4 mm-thick diamond windows of the sample cell, a (non-trivial) beamline alignment method for maximizing photon statistics at the sample position has been designed. Key strategies include the selection of a high X-ray energy edge, the truncation of the smallest achievable focal spot size to target size with a slit and optimization of the horizontal slit position for transmission of the desired energy band. A motor-scanning program for precise sample centering has been developed. These details are presented with rationalization for every step. With these strategies, Nb K-edge XANES spectra for Nb2O5 under high pressure (0-16.9 GPa) have been generated, reproducing the reported spectra for Nb2O5 under ambient conditions and high pressure. These first HPXANES results are reported in this paper. The scope of extending good data quality to the EXAFS range in the future is addressed. This work should inspire and guide future high-pressure XAFS experiments with comparable infrastructure.

17.
RSC Adv ; 10(71): 43497-43507, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-35519712

RESUMO

Crystallographic and electronic structures of phase pure ternary solid solutions of Ni1-x Co x O (x = 0 to 1) have been studied using XRD, EXAFS and XAS measurements. The lattice parameter of the cubic rock-salt (RS) Ni1-x Co x O solid solutions increases linearly with increasing Co content and follows Vegard's law, in the complete composition range. A linear increase in the bond lengths (Ni/Co-O, Ni-Ni and Ni-Co) with "x", closely following the bond lengths determined from virtual crystal approximation (VCA), is observed, which implies that there is only a minimal local distortion of the lattice in the mixed crystal. The optical gap of the ternary solid solution determined from diffuse reflectivity measurements shows neither a linear variation with Co composition nor bowing, as observed in many ternary semiconductors. This trend in the variation of optical gaps is explained by probing the conduction band using XAS at the O K-edge. We have observed that the variation in the onset energy of the conduction band edge with "x" is very similar to the variation in the optical gap with "x", thus clearly indicating the dominant role played by the conduction band position in determining the optical gap. The variation in the intensities of the pre-edge peak in the XANES spectra measured at Ni and Co K-edges, and the L1/2 peak in XAS spectra measured at Ni and Co L-edges, is found to depend on the unoccupied O 2p-metal-(Ni/Co) 3d hybridized states and the bond lengths.

18.
Phys Chem Chem Phys ; 21(40): 22482-22490, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31588473

RESUMO

We report here the stabilization of the cubic phase under ambient conditions in the thin films of zirconia synthesized by electron beam evaporation. The cubic phase stabilization was achieved without the use of chemical stabilizers and/or concurrent ion beam bombardment. Films of two different thicknesses (660 nm and 140 nm) were deposited. While the 660 nm as-deposited films were in the cubic phase, as indicated by X-ray diffraction and Raman spectroscopy, the 140 nm as-deposited films were amorphous and the transformation to the cubic phase was obtained after thermal annealing. Extended X-ray absorption fine structure measurements revealed the existence of oxygen vacancies in the local structure surrounding zirconium for all films. However, the amount of these oxygen vacancies was found to be significantly higher for the amorphous films as compared to that for the films in the cubic phase (660 nm as-deposited and 140 nm annealed films). The stabilization of the cubic phase is attributed to the breaking of the oxygen-zirconium bonds due to the presence of the oxygen vacancies, which results in the suppression of the soft X2- mode of vibration of the oxygen sub-lattice. Our first-principles modeling under the framework of density functional theory shows that the cubic structure with oxygen vacancies is indeed more stable under ambient conditions than its pristine (without vacancies) counterpart due to breaking of the oxygen bonds. The requirement of a critical amount of these vacancies for cubic phase stabilization is discussed.

19.
Phys Chem Chem Phys ; 21(11): 6198-6206, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30829355

RESUMO

The present work focuses on synthesis and X-ray absorption studies of single phase oxygen deficient anatase TiO2 thin films. These films are prepared in a two-step method viz. the synthesis of near stoichiometric anatase TiO2 films using an open atmospheric spray pyrolysis method followed by vacuum annealing at their corresponding synthesis temperatures (Ts = 450 °C, 500 °C) for different time durations (t = 2, 4, 6, 8 hours). XRD and Raman studies of these films ascertained the formation and retention of the anatase phase post annealing, indicating that there was no phase change due to prolonged annealing. Extended X-ray absorption spectra (EXAFS) and X-ray absorption near edge spectra (XANES) revealed the presence of an oxygen vacancy and its effect on the local co-ordination. The co-ordination number obtained from EXAFS analysis revealed that the number density of the oxygen vacancy is higher in the case of thin films synthesized at 450 °C than in the case of the films synthesized at 500 °C. As the oxygen vacancy leads to changes in local co-ordination, which in turn have a profound effect on the pre-edge features of the X-ray absorption spectra (XAS), theoretically simulated XAS spectra of pure anatase TiO2 and oxygen deficient anatase TiO2 were generated using FEFF and were found to match with the experimentally observed spectra. In addition, the ambiguities in whether a change in the metal-oxygen bond length has any effect on the pre-edge features or not were delineated in the present study by comparing the pre-edge peak positions of the oxygen deficient TiO2 films. Our results matched with those of some of the researchers who have studied the rutile phase TiO2, wherein it was concluded that in the case of the titanium-oxygen system, the mean Ti-O bond length does have an effect on the pre-edge peak position. It was observed that as the Ti-O mean bond length increases, the pre-edge peak positions shift towards lower energy, which is in concurrence with the literature available for other Ti-O systems with similar geometry. The second pre-edge peak intensity, which is a measure of disorder, is higher for TiO2450 °C-2 h and TiO2500 °C-2 h thin films. This is attributed to the annealing effect, which suggests that TiO6 octahedrons are the most disordered for thin films annealed for 2 h and become more ordered upon annealing for longer times.

20.
J Synchrotron Radiat ; 26(Pt 2): 445-449, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855254

RESUMO

Setting up of the X-ray Magnetic Circular Dichroism (XMCD) measurement facility with hard X-rays at the Energy-Dispersive EXAFS beamline (BL-08) at the Indus-2 synchrotron source is reported. This includes the design and development of a water-cooled electromagnet having a highest magnetic field of 2 T in a good field volume of 125 mm3 and having a 10 mm hole throughout for passage of the synchrotron beam. This also includes the development of an (X-Z-θ) motion stage for the heavy electromagnet for aligning its axis and the beam hole along the synchrotron beam direction. Along with the above developments, also reported is the first XMCD signal measured on a thick Gd film in the above set-up which shows good agreement with the reported results. This is the first facility to carry out XMCD measurement with hard X-rays in India.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...