Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826262

RESUMO

Polyethylene terephthalate has been widely used in the packaging industry. Degraded PET micro-nano plastics could pose public health concerns following release into various environments. This study focuses on PET degradation under ultraviolet radiation using the NIST SPHERE facility at the National Institute of Standards and Technology in saturated humidity (i.e., ≥ 95 % relative humidity) and dry conditions (i.e., ≤ 5 % relative humidity) with varying temperatures (30 °C, 40 °C, and 50 °C) for up 20 days. ATR-FTIR was used to characterize the chemical composition change of degraded PET as a function of UV exposure time. The results showed that the cleavage of the ester bond at peak 1713 cm-1 and the formation of the carboxylic acid at peak 1685 cm-1 are significantly influenced by UV radiation. Furthermore, the formation of carboxylic acid was considerably higher at saturated humidity and 50 °C conditions compared to dry conditions. The ester bond cleavage was also more pronounced in saturated humidity conditions. The novelty of this study is to provide insights into the chemical degradation of PET under environmental conditions, including UV radiation, humidity, and temperature. The results can be used to develop strategies to reduce the environmental impact of plastic pollution.

2.
Nat Commun ; 15(1): 4554, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811587

RESUMO

High-entropy alloys (HEAs) provide new research avenues for alloy combinations in the periodic table, opening numerous possibilities in novel-alloy applications. However, their electrical characteristics have been relatively underexplored. The challenge in establishing an HEA electrical conductivity model lies in the changes in electronic characteristics caused by lattice distortion and complexity of nanostructures. Here we show a low-frequency electrical conductivity model for the Nb-Mo-Ta-W HEA system. The cocktail effect is found to explain trends in electrical-conductivity changes in HEAs, while the magnitude of the reduction is understood by the calculated plasma frequency, free electron density, and measured relaxation time by terahertz spectroscopy. As a result, the refractory HEA Nb15Mo35Ta15W35 thin film exhibits both high hardness and excellent conductivity. This combination of Nb15Mo35Ta15W35 makes it suitable for applications in atomic force microscopy probe coating, significantly improving their wear resistance and atomic-scale image resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA