Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Genome Med ; 16(1): 53, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570875

RESUMO

BACKGROUND: NODAL signaling plays a critical role in embryonic patterning and heart development in vertebrates. Genetic variants resulting in perturbations of the TGF-ß/NODAL signaling pathway have reproducibly been shown to cause laterality defects in humans. To further explore this association and improve genetic diagnosis, the study aims to identify and characterize a broader range of NODAL variants in a large number of individuals with laterality defects. METHODS: We re-analyzed a cohort of 321 proband-only exomes of individuals with clinically diagnosed laterality congenital heart disease (CHD) using family-based, rare variant genomic analyses. To this cohort we added 12 affected subjects with known NODAL variants and CHD from institutional research and clinical cohorts to investigate an allelic series. For those with candidate contributory variants, variant allele confirmation and segregation analysis were studied by Sanger sequencing in available family members. Array comparative genomic hybridization and droplet digital PCR were utilized for copy number variants (CNV) validation and characterization. We performed Human Phenotype Ontology (HPO)-based quantitative phenotypic analyses to dissect allele-specific phenotypic differences. RESULTS: Missense, nonsense, splice site, indels, and/or structural variants of NODAL were identified as potential causes of heterotaxy and other laterality defects in 33 CHD cases. We describe a recurrent complex indel variant for which the nucleic acid secondary structure predictions implicate secondary structure mutagenesis as a possible mechanism for formation. We identified two CNV deletion alleles spanning NODAL in two unrelated CHD cases. Furthermore, 17 CHD individuals were found (16/17 with known Hispanic ancestry) to have the c.778G > A:p.G260R NODAL missense variant which we propose reclassification from variant of uncertain significance (VUS) to likely pathogenic. Quantitative HPO-based analyses of the observed clinical phenotype for all cases with p.G260R variation, including heterozygous, homozygous, and compound heterozygous cases, reveal clustering of individuals with biallelic variation. This finding provides evidence for a genotypic-phenotypic correlation and an allele-specific gene dosage model. CONCLUSION: Our data further support a role for rare deleterious variants in NODAL as a cause for sporadic human laterality defects, expand the repertoire of observed anatomical complexity of potential cardiovascular anomalies, and implicate an allele specific gene dosage model.


Assuntos
Cardiopatias Congênitas , Síndrome de Heterotaxia , Transposição dos Grandes Vasos , Animais , Humanos , Artérias , Hibridização Genômica Comparativa , Cardiopatias Congênitas/genética , Síndrome de Heterotaxia/genética , Fenótipo
2.
medRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562723

RESUMO

Comprehending the mechanism behind human diseases with an established heritable component represents the forefront of personalized medicine. Nevertheless, numerous medically important genes are inaccurately represented in short-read sequencing data analysis due to their complexity and repetitiveness or the so-called 'dark regions' of the human genome. The advent of PacBio as a long-read platform has provided new insights, yet HiFi whole-genome sequencing (WGS) cost remains frequently prohibitive. We introduce a targeted sequencing and analysis framework, Twist Alliance Dark Genes Panel (TADGP), designed to offer phased variants across 389 medically important yet complex autosomal genes. We highlight TADGP accuracy across eleven control samples and compare it to WGS. This demonstrates that TADGP achieves variant calling accuracy comparable to HiFi-WGS data, but at a fraction of the cost. Thus, enabling scalability and broad applicability for studying rare diseases or complementing previously sequenced samples to gain insights into these complex genes. TADGP revealed several candidate variants across all cases and provided insight into LPA diversity when tested on samples from rare disease and cardiovascular disease cohorts. In both cohorts, we identified novel variants affecting individual disease-associated genes (e.g., IKZF1, KCNE1). Nevertheless, the annotation of the variants across these 389 medically important genes remains challenging due to their underrepresentation in ClinVar and gnomAD. Consequently, we also offer an annotation resource to enhance the evaluation and prioritization of these variants. Overall, we can demonstrate that TADGP offers a cost-efficient and scalable approach to routinely assess the dark regions of the human genome with clinical relevance.

3.
Res Sq ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38464263

RESUMO

Despite extensive research into the genetic underpinnings of neurodevelopmental disorders (NDD), many clinical cases remain unresolved. We studied a female proband with a NDD, mildly dysmorphic facial features, and brain stem hypoplasia on neuroimaging. Comprehensive genomic analyses revealed a terminal 5p loss and terminal 18q gain in the proband while a diploid copy number for chromosomes 5 and 18 in both parents. Genomic investigations in the proband identified an unbalanced translocation t(5;18) with additional genetic material from chromosome 2 (2q31.3) inserted at the breakpoint, pointing to a complex chromosomal rearrangement (CCR) involving 5p15.2, 2q31.3, and 18q21.32. Breakpoint junction analyses enabled by long read genome sequencing unveiled the presence of four distinct junctions in the father, who is carrier of a balanced CCR. The proband inherited from the father both the abnormal chromosome 5 resulting in segmental aneusomies of chr5 (loss) and chr18 (gain) and a der(2) homologue. Evidences suggest a chromoplexy mechanism for this CCR derivation, involving double-strand breaks (DSBs) repaired by non-homologous end joining (NHEJ) or alternative end joining (alt-EJ). The complexity of the CCR and the segregation of homologues elucidate the genetic model for this family. This study demonstrates the importance of combining multiple genomic technologies to uncover genetic causes of complex neurodevelopmental syndrome and to better understand genetic disease mechanisms.

4.
medRxiv ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38405817

RESUMO

FLVCR1 encodes Feline leukemia virus subgroup C receptor 1 (FLVCR1), a solute carrier (SLC) transporter within the Major Facilitator Superfamily. FLVCR1 is a widely expressed transmembrane protein with plasma membrane and mitochondrial isoforms implicated in heme, choline, and ethanolamine transport. While Flvcr1 knockout mice die in utero with skeletal malformations and defective erythropoiesis reminiscent of Diamond-Blackfan anemia, rare biallelic pathogenic FLVCR1 variants are linked to childhood or adult-onset neurodegeneration of the retina, spinal cord, and peripheral nervous system. We ascertained from research and clinical exome sequencing 27 individuals from 20 unrelated families with biallelic ultra-rare missense and predicted loss-of-function (pLoF) FLVCR1 variant alleles. We characterize an expansive FLVCR1 phenotypic spectrum ranging from adult-onset retinitis pigmentosa to severe developmental disorders with microcephaly, reduced brain volume, epilepsy, spasticity, and premature death. The most severely affected individuals, including three individuals with homozygous pLoF variants, share traits with Flvcr1 knockout mice and Diamond-Blackfan anemia including macrocytic anemia and congenital skeletal malformations. Pathogenic FLVCR1 missense variants primarily lie within transmembrane domains and reduce choline and ethanolamine transport activity compared with wild-type FLVCR1 with minimal impact on FLVCR1 stability or subcellular localization. Several variants disrupt splicing in a mini-gene assay which may contribute to genotype-phenotype correlations. Taken together, these data support an allele-specific gene dosage model in which phenotypic severity reflects residual FLVCR1 activity. This study expands our understanding of Mendelian disorders of choline and ethanolamine transport and demonstrates the importance of choline and ethanolamine in neurodevelopment and neuronal homeostasis.

5.
Nucleic Acids Res ; 52(4): e18, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153174

RESUMO

Homozygous duplications contribute to genetic disease by altering gene dosage or disrupting gene regulation and can be more deleterious to organismal biology than heterozygous duplications. Intragenic exonic duplications can result in loss-of-function (LoF) or gain-of-function (GoF) alleles that when homozygosed, i.e. brought to homozygous state at a locus by identity by descent or state, could potentially result in autosomal recessive (AR) rare disease traits. However, the detection and functional interpretation of homozygous duplications from exome sequencing data remains a challenge. We developed a framework algorithm, HMZDupFinder, that is designed to detect exonic homozygous duplications from exome sequencing (ES) data. The HMZDupFinder algorithm can efficiently process large datasets and accurately identifies small intragenic duplications, including those associated with rare disease traits. HMZDupFinder called 965 homozygous duplications with three or less exons from 8,707 ES with a recall rate of 70.9% and a precision of 16.1%. We experimentally confirmed 8/10 rare homozygous duplications. Pathogenicity assessment of these copy number variant alleles allowed clinical genomics contextualization for three homozygous duplications alleles, including two affecting known OMIM disease genes EDAR (MIM# 224900), TNNT1(MIM# 605355), and one variant in a novel candidate disease gene: PAAF1.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Software , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Homozigoto , Doenças Raras/genética
6.
PLoS Genet ; 19(11): e1011005, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37934770

RESUMO

BACKGROUND: Kinesin motor proteins transport intracellular cargo, including mRNA, proteins, and organelles. Pathogenic variants in kinesin-related genes have been implicated in neurodevelopmental disorders and skeletal dysplasias. We identified de novo, heterozygous variants in KIF5B, encoding a kinesin-1 subunit, in four individuals with osteogenesis imperfecta. The variants cluster within the highly conserved kinesin motor domain and are predicted to interfere with nucleotide binding, although the mechanistic consequences on cell signaling and function are unknown. METHODS: To understand the in vivo genetic mechanism of KIF5B variants, we modeled the p.Thr87Ile variant that was found in two patients in the C. elegans ortholog, unc-116, at the corresponding position (Thr90Ile) by CRISPR/Cas9 editing and performed functional analysis. Next, we studied the cellular and molecular consequences of the recurrent p.Thr87Ile variant by microscopy, RNA and protein analysis in NIH3T3 cells, primary human fibroblasts and bone biopsy. RESULTS: C. elegans heterozygous for the unc-116 Thr90Ile variant displayed abnormal body length and motility phenotypes that were suppressed by additional copies of the wild type allele, consistent with a dominant negative mechanism. Time-lapse imaging of GFP-tagged mitochondria showed defective mitochondria transport in unc-116 Thr90Ile neurons providing strong evidence for disrupted kinesin motor function. Microscopy studies in human cells showed dilated endoplasmic reticulum, multiple intracellular vacuoles, and abnormal distribution of the Golgi complex, supporting an intracellular trafficking defect. RNA sequencing, proteomic analysis, and bone immunohistochemistry demonstrated down regulation of the mTOR signaling pathway that was partially rescued with leucine supplementation in patient cells. CONCLUSION: We report dominant negative variants in the KIF5B kinesin motor domain in individuals with osteogenesis imperfecta. This study expands the spectrum of kinesin-related disorders and identifies dysregulated signaling targets for KIF5B in skeletal development.


Assuntos
Cinesinas , Osteogênese Imperfeita , Animais , Humanos , Camundongos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Regulação para Baixo , Cinesinas/genética , Cinesinas/metabolismo , Células NIH 3T3 , Proteômica , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
7.
bioRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873367

RESUMO

Background: The duplication-triplication/inverted-duplication (DUP-TRP/INV-DUP) structure is a type of complex genomic rearrangement (CGR) hypothesized to result from replicative repair of DNA due to replication fork collapse. It is often mediated by a pair of inverted low-copy repeats (LCR) followed by iterative template switches resulting in at least two breakpoint junctions in cis . Although it has been identified as an important mutation signature of pathogenicity for genomic disorders and cancer genomes, its architecture remains unresolved and is predicted to display at least four structural variation (SV) haplotypes. Results: Here we studied the genomic architecture of DUP-TRP/INV-DUP by investigating the genomic DNA of 24 patients with neurodevelopmental disorders identified by array comparative genomic hybridization (aCGH) on whom we found evidence for the existence of 4 out of 4 predicted SV haplotypes. Using a combination of short-read genome sequencing (GS), long- read GS, optical genome mapping and StrandSeq the haplotype structure was resolved in 18 samples. This approach refined the point of template switching between inverted LCRs in 4 samples revealing a DNA segment of ∼2.2-5.5 kb of 100% nucleotide similarity. A prediction model was developed to infer the LCR used to mediate the non-allelic homology repair. Conclusions: These data provide experimental evidence supporting the hypothesis that inverted LCRs act as a recombinant substrate in replication-based repair mechanisms. Such inverted repeats are particularly relevant for formation of copy-number associated inversions, including the DUP-TRP/INV-DUP structures. Moreover, this type of CGR can result in multiple conformers which contributes to generate diverse SV haplotypes in susceptible loci .

8.
J Inherit Metab Dis ; 46(6): 1195-1205, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37711075

RESUMO

Biallelic variants in genes for seven out of eight subunits of the conserved oligomeric Golgi complex (COG) are known to cause recessive congenital disorders of glycosylation (CDG) with variable clinical manifestations. COG3 encodes a constituent subunit of the COG complex that has not been associated with disease traits in humans. Herein, we report two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families that co-segregated with COG3-CDG presentations. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings. Biochemical analysis of serum transferrin from one family showed the loss of a single sialic acid. Western blotting on patient-derived fibroblasts revealed reduced COG3 and COG4. Further experiments showed delayed retrograde vesicular recycling in patient cells. This report adds to the knowledge of the COG-CDG network by providing collective evidence for a COG3-CDG rare disease trait and implicating a likely pathology of the disorder as the perturbation of Golgi trafficking.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Defeitos Congênitos da Glicosilação , Humanos , Glicosilação , Proteínas Adaptadoras de Transporte Vesicular/genética , Fibroblastos/metabolismo , Defeitos Congênitos da Glicosilação/genética , Fenótipo
9.
Am J Hum Genet ; 110(8): 1394-1413, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37467750

RESUMO

DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.


Assuntos
Doença de Charcot-Marie-Tooth , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , RNA Helicases DEAD-box/genética , Diclorodifenil Dicloroetileno , DNA Helicases , Mamíferos , Proteínas de Neoplasias/genética
10.
Clin Genet ; 104(3): 344-349, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37157980

RESUMO

Pathogenic biallelic variants in LSS are associated with three Mendelian rare disease traits including congenital cataract type 44, autosomal recessive hypotrichosis type 14, and alopecia-intellectual disability syndrome type 4 (APMR4). We performed trio research exome sequencing on a family with a four-year-old male with global developmental delay, epilepsy and striking alopecia, and identified novel compound heterozygous LSS splice site (c.14+2T>C) and missense (c.1357 G>A; p.V453L) variant alleles. Rare features associated with APMR4 such as cryptorchidism, micropenis, mild cortical brain atrophy and thin corpus callosum were detected. Previously unreported APMR4 findings including cerebellar involvement in the form of unsteady ataxic gait, small vermis with prominent folia, were noted. A review of all reported variants to date in 29 families with LSS-related phenotypes showed an emerging genotype-phenotype correlation. Our report potentially expands LSS-related phenotypic spectrum and highlights the importance of performing brain imaging in LSS-related conditions.


Assuntos
Deficiência Intelectual , Masculino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação , Doenças Raras , Alopecia/diagnóstico , Alopecia/genética , Fenótipo , Síndrome
11.
HGG Adv ; 4(3): 100188, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37124138

RESUMO

Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is characterized by aplasia of the female reproductive tract; the syndrome can include renal anomalies, absence or dysgenesis, and skeletal anomalies. While functional models have elucidated several candidate genes, only WNT4 (MIM: 603490) variants have been definitively associated with a subtype of MRKH with hyperandrogenism (MIM: 158330). DNA from 148 clinically diagnosed MRKH probands across 144 unrelated families and available family members from North America, Europe, and South America were exome sequenced (ES) and by family-based genomics analyzed for rare likely deleterious variants. A replication cohort consisting of 442 Han Chinese individuals with MRKH was used to further reproduce GREB1L findings in diverse genetic backgrounds. Proband and OMIM phenotypes annotated using the Human Phenotype Ontology were analyzed to quantitatively delineate the phenotypic spectrum associated with GREB1L variant alleles found in our MRKH cohort and those previously published. This study reports 18 novel GREB1L variant alleles, 16 within a multiethnic MRKH cohort and two within a congenital scoliosis cohort. Cohort-wide analyses for a burden of rare variants within a single gene identified likely damaging variants in GREB1L (MIM: 617782), a known disease gene for renal hypoplasia and uterine abnormalities (MIM: 617805), in 16 of 590 MRKH probands. GREB1L variant alleles, including a CNV null allele, were found in 8 MRKH type 1 probands and 8 MRKH type II probands. This study used quantitative phenotypic analyses in a worldwide multiethnic cohort to identify and strengthen the association of GREB1L to isolated uterine agenesis (MRKH type I) and syndromic MRKH type II.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual , Anormalidades Urogenitais , Feminino , Humanos , Transtornos 46, XX do Desenvolvimento Sexual/genética , Útero/anormalidades
12.
Am J Med Genet A ; 191(3): 794-804, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598158

RESUMO

Protein phosphatase 1 regulatory subunit 35 (PPP1R35) encodes a centrosomal protein required for recruiting microtubule-binding elongation machinery. Several proteins in this centriole biogenesis pathway correspond to established primary microcephaly (MCPH) genes, and multiple model organism studies hypothesize PPP1R35 as a candidate MCPH gene. Here, using exome sequencing (ES) and family-based rare variant analyses, we report a homozygous, frameshifting indel deleting the canonical stop codon in the last exon of PPP1R35 [Chr7: c.753_*3delGGAAGCGTAGACCinsCG (p.Trp251Cysfs*22)]; the variant allele maps in a 3.7 Mb block of absence of heterozygosity (AOH) in a proband with severe MCPH (-4.3 SD at birth, -6.1 SD by 42 months), pachygyria, and global developmental delay from a consanguineous Turkish kindred. Droplet digital PCR (ddPCR) confirmed mutant mRNA expression in fibroblasts. In silico prediction of the translation of mutant PPP1R35 is expected to be elongated by 18 amino acids before encountering a downstream stop codon. This complex indel allele is absent in public databases (ClinVar, gnomAD, ARIC, 1000 genomes) and our in-house database of 14,000+ exomes including 1800+ Turkish exomes supporting predicted pathogenicity. Comprehensive literature searches for PPP1R35 variants yielded two probands affected with severe microcephaly (-15 SD and -12 SD) with the same homozygous indel from a single, consanguineous, Iranian family from a cohort of 404 predominantly Iranian families. The lack of heterozygous cases in two large cohorts representative of the genetic background of these two families decreased our suspicion of a founder allele and supports the contention of a recurrent mutation. We propose two potential secondary structure mutagenesis models for the origin of this variant allele mediated by hairpin formation between complementary GC rich segments flanking the stop codon via secondary structure mutagenesis.


Assuntos
Microcefalia , Recém-Nascido , Humanos , Microcefalia/genética , Códon de Terminação , Irã (Geográfico) , Proteínas Associadas aos Microtúbulos/genética , Mutação da Fase de Leitura/genética , Linhagem
13.
Genome Med ; 14(1): 122, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36303224

RESUMO

BACKGROUND: The multiple de novo copy number variant (MdnCNV) phenotype is described by having four or more constitutional de novo CNVs (dnCNVs) arising independently throughout the human genome within one generation. It is a rare peri-zygotic mutational event, previously reported to be seen once in every 12,000 individuals referred for genome-wide chromosomal microarray analysis due to congenital abnormalities. These rare families provide a unique opportunity to understand the genetic factors of peri-zygotic genome instability and the impact of dnCNV on human diseases. METHODS: Chromosomal microarray analysis (CMA), array-based comparative genomic hybridization, short- and long-read genome sequencing (GS) were performed on the newly identified MdnCNV family to identify de novo mutations including dnCNVs, de novo single-nucleotide variants (dnSNVs), and indels. Short-read GS was performed on four previously published MdnCNV families for dnSNV analysis. Trio-based rare variant analysis was performed on the newly identified individual and four previously published MdnCNV families to identify potential genetic etiologies contributing to the peri-zygotic genomic instability. Lin semantic similarity scores informed quantitative human phenotype ontology analysis on three MdnCNV families to identify gene(s) driving or contributing to the clinical phenotype. RESULTS: In the newly identified MdnCNV case, we revealed eight de novo tandem duplications, each ~ 1 Mb, with microhomology at 6/8 breakpoint junctions. Enrichment of de novo single-nucleotide variants (SNV; 6/79) and de novo indels (1/12) was found within 4 Mb of the dnCNV genomic regions. An elevated post-zygotic SNV mutation rate was observed in MdnCNV families. Maternal rare variant analyses identified three genes in distinct families that may contribute to the MdnCNV phenomenon. Phenotype analysis suggests that gene(s) within dnCNV regions contribute to the observed proband phenotype in 3/3 cases. CNVs in two cases, a contiguous gene duplication encompassing PMP22 and RAI1 and another duplication affecting NSD1 and SMARCC2, contribute to the clinically observed phenotypic manifestations. CONCLUSIONS: Characteristic features of dnCNVs reported here are consistent with a microhomology-mediated break-induced replication (MMBIR)-driven mechanism during the peri-zygotic period. Maternal genetic variants in DNA repair genes potentially contribute to peri-zygotic genomic instability. Variable phenotypic features were observed across a cohort of three MdnCNV probands, and computational quantitative phenotyping revealed that two out of three had evidence for the contribution of more than one genetic locus to the proband's phenotype supporting the hypothesis of de novo multilocus pathogenic variation (MPV) in those families.


Assuntos
Variações do Número de Cópias de DNA , Instabilidade Genômica , Humanos , Hibridização Genômica Comparativa , Mutação , DNA , Nucleotídeos , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
14.
Hum Mutat ; 43(12): 2033-2053, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054313

RESUMO

Xia-Gibbs syndrome (XGS; MIM# 615829) is a rare mendelian disorder characterized by Development Delay (DD), intellectual disability (ID), and hypotonia. Individuals with XGS typically harbor de novo protein-truncating mutations in the AT-Hook DNA binding motif containing 1 (AHDC1) gene, although some missense mutations can also cause XGS. Large de novo heterozygous deletions that encompass the AHDC1 gene have also been ascribed as diagnostic for the disorder, without substantial evidence to support their pathogenicity. We analyzed 19 individuals with large contiguous deletions involving AHDC1, along with other genes. One individual bore the smallest known contiguous AHDC1 deletion (∼350 Kb), encompassing eight other genes within chr1p36.11 (Feline Gardner-Rasheed, IFI6, FAM76A, STX12, PPP1R8, THEMIS2, RPA2, SMPDL3B) and terminating within the first intron of AHDC1. The breakpoint junctions and phase of the deletion were identified using both short and long read sequencing (Oxford Nanopore). Quantification of RNA expression patterns in whole blood revealed that AHDC1 exhibited a mono-allelic expression pattern with no deficiency in overall AHDC1 expression levels, in contrast to the other deleted genes, which exhibited a 50% reduction in mRNA expression. These results suggest that AHDC1 expression in this individual is compensated by a novel regulatory mechanism and advances understanding of mutational and regulatory mechanisms in neurodevelopmental disorders.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Humanos , Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Endorribonucleases , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fosfoproteínas Fosfatases , Proteínas Qa-SNARE , Proteínas de Ligação a RNA , Esfingomielina Fosfodiesterase
15.
Genet Med ; 24(11): 2262-2273, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112137

RESUMO

PURPOSE: Mayer-Rokitansky-Küster-Hauser syndrome (MRKHS) is characterized by congenital absence of the uterus, cervix, and the upper part of the vagina in females. Whole-gene deletion and loss-of-function variants in TBX6 have been identified in association with MRKHS. We aimed to expand the spectrum of TBX6 variants in MRKHS and explore the biological effect of the variant alleles. METHODS: Rare variants in TBX6 were called from a combined multiethnic cohort of 622 probands with MRKHS who underwent exome sequencing or genome sequencing. Multiple in vitro functional experiments were performed, including messenger RNA analysis, western blotting, transcriptional activity assay, and immunofluorescence staining. RESULTS: We identified 16 rare variants in TBX6 from the combined cohort, including 1 protein-truncating variant reported in our previous study and 15 variants with unknown effects. By comparing the prevalence of TBX6 variants in the Chinese MRKHS cohort vs 1038 female controls, we observed a significant mutational burden of TBX6 in affected individuals (P = .0004, odds ratio = 5.25), suggesting a causal role of TBX6 variants in MRKHS. Of the 15 variants with uncertain effects, 7 were shown to induce a loss-of-function effect through various mechanisms. The c.423G>A (p.Leu141=) and c.839+5G>A variants impaired the normal splicing of TBX6 messenger RNA, c.422T>C (p.Leu141Pro) and c.745G>A (p.Val249Met) led to decreased protein expression, c.10C>T (p.Pro4Ser) and c.400G>A (p.Glu134Lys) resulted in perturbed transcriptional activity, and c.356G>A (p.Arg119His) caused protein mislocalization. We observed incomplete penetrance and variable expressivity in families carrying deleterious variants, which indicates a more complex genetic mechanism than classical Mendelian inheritance. CONCLUSION: Our study expands the mutational spectrum of TBX6 in MRKHS and delineates the molecular pathogenesis of TBX6 variants, supporting the association between deleterious variants in TBX6 and MRKHS.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual , Anormalidades Congênitas , Feminino , Humanos , Transtornos 46, XX do Desenvolvimento Sexual/genética , Ductos Paramesonéfricos/anormalidades , Vagina/anormalidades , RNA Mensageiro , Anormalidades Congênitas/genética , Proteínas com Domínio T/genética
16.
Am J Hum Genet ; 109(9): 1713-1723, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35948005

RESUMO

The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.


Assuntos
Mioquimia , Proteínas do Tecido Nervoso , Animais , Autoanticorpos , Axônios , Genômica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mamíferos/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Fenótipo , Genética Reversa
17.
HGG Adv ; 3(4): 100132, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36035248

RESUMO

Genetic heterogeneity, reduced penetrance, and variable expressivity, the latter including asymmetric body axis plane presentations, have all been described in families with congenital limb malformations (CLMs). Interfamilial and intrafamilial heterogeneity highlight the complexity of the underlying genetic pathogenesis of these developmental anomalies. Family-based genomics by exome sequencing (ES) and rare variant analyses combined with whole-genome array-based comparative genomic hybridization were implemented to investigate 18 families with limb birth defects. Eleven of 18 (61%) families revealed explanatory variants, including 7 single-nucleotide variant alleles and 3 copy number variants (CNVs), at previously reported "disease trait associated loci": BHLHA9, GLI3, HOXD cluster, HOXD13, NPR2, and WNT10B. Breakpoint junction analyses for all three CNV alleles revealed mutational signatures consistent with microhomology-mediated break-induced replication, a mechanism facilitated by Alu/Alu-mediated rearrangement. Homozygous duplication of BHLHA9 was observed in one Turkish kindred and represents a novel contributory genetic mechanism to Gollop-Wolfgang Complex (MIM: 228250), where triplication of the locus has been reported in one family from Japan (i.e., 4n = 2n + 2n versus 4n = 3n + 1n allelic configurations). Genes acting on limb patterning are sensitive to a gene dosage effect and are often associated with an allelic series. We extend an allele-specific gene dosage model to potentially assist, in an adjuvant way, interpretations of interconnections among an allelic series, clinical severity, and reduced penetrance of the BHLHA9-related CLM spectrum.

18.
Hum Mutat ; 43(7): 900-918, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35344616

RESUMO

Robinow syndrome is characterized by a triad of craniofacial dysmorphisms, disproportionate-limb short stature, and genital hypoplasia. A significant degree of phenotypic variability seems to correlate with different genes/loci. Disturbances of the noncanonical WNT-pathway have been identified as the main cause of the syndrome. Biallelic variants in ROR2 cause an autosomal recessive form of the syndrome with distinctive skeletal findings. Twenty-two patients with a clinical diagnosis of autosomal recessive Robinow syndrome were screened for variants in ROR2 using multiple molecular approaches. We identified 25 putatively pathogenic ROR2 variants, 16 novel, including single nucleotide variants and exonic deletions. Detailed phenotypic analyses revealed that all subjects presented with a prominent forehead, hypertelorism, short nose, abnormality of the nasal tip, brachydactyly, mesomelic limb shortening, short stature, and genital hypoplasia in male patients. A total of 19 clinical features were present in more than 75% of the subjects, thus pointing to an overall uniformity of the phenotype. Disease-causing variants in ROR2, contribute to a clinically recognizable autosomal recessive trait phenotype with multiple skeletal defects. A comprehensive quantitative clinical evaluation of this cohort delineated the phenotypic spectrum of ROR2-related Robinow syndrome. The identification of exonic deletion variant alleles further supports the contention of a loss-of-function mechanism in the etiology of the syndrome.


Assuntos
Anormalidades Craniofaciais , Nanismo , Deformidades Congênitas dos Membros , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Anormalidades Urogenitais , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Nanismo/diagnóstico , Nanismo/genética , Genes Recessivos , Humanos , Deformidades Congênitas dos Membros/diagnóstico , Deformidades Congênitas dos Membros/genética , Masculino , Fenótipo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Anormalidades Urogenitais/diagnóstico , Anormalidades Urogenitais/genética
19.
Am J Med Genet A ; 188(7): 2153-2161, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332675

RESUMO

Hereditary sensory and autonomic neuropathy type 2B (HSAN2B) is a rare autosomal recessive peripheral neuropathy caused by biallelic variants in RETREG1 (formerly FAM134B). HSAN2B is characterized by sensory impairment resulting in skin ulcerations, amputations, and osteomyelitis as well as variable weakness, spasticity, and autonomic dysfunction. Here, we report four affected individuals with recurrent osteomyelitis, ulceration, and amputation of hands and feet, sensory neuropathy, hyperhidrosis, urinary incontinence, and renal failure from a family without any known shared parental ancestry. Due to the history of chronic recurrent multifocal osteomyelitis and microcytic anemia, a diagnosis of Majeed syndrome was considered; however, sequencing of LPIN2 was negative. Family-based exome sequencing (ES) revealed a novel homozygous ultrarare RETREG1 variant NM_001034850.2:c.321G>A;p.Trp107Ter. Electrophysiological studies of the proband demonstrated axonal sensorimotor neuropathy predominantly in the lower extremities. Consistent with the lack of shared ancestry, the coefficient of inbreeding calculated from ES data was low (F = 0.002), but absence of heterozygosity (AOH) analysis demonstrated a 7.2 Mb AOH block surrounding the variant consistent with a founder allele. Two of the four affected individuals had unexplained renal failure which has not been reported in HSAN2B cases to date. Therefore, this report describes a novel RETREG1 founder allele and suggests renal failure may be an unrecognized feature of the RETREG1-disease spectrum.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Osteomielite , Insuficiência Renal , Alelos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Osteomielite/genética , Linhagem
20.
Hum Mutat ; 43(6): 782-790, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35191117

RESUMO

Here we describe MyGene2, Geno2MP, VariantMatcher, and Franklin; databases that provide variant-level information and phenotypic features to researchers, clinicians, healthcare providers and patients. Following the footsteps of the Matchmaker Exchange project that connects exome, genome, and phenotype databases at the gene level, these databases have as one goal to facilitate connection to one another using Data Connect, a standard for discovery and search of biomedical data from the Global Alliance for Genomics and Health (GA4GH).


Assuntos
Bases de Dados Genéticas , Disseminação de Informação , Exoma/genética , Genômica , Humanos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...