Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 72(13): 4888-4903, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33940615

RESUMO

GIBBERELLIN MYB GENE (GAMYB), UNDEVELOPED TAPETUM1 (UDT1), TDR INTERACTING PROTEIN2 (TIP2/bHLH142), TAPETUM DEGENERATION RETARDATION (TDR), and ETERNAL TAPETUM 1/DELAYED TAPETUM DEGENERATION (EAT1/DTD) are important transcription factors that play a crucial role during pollen development in rice. This study demonstrates that bHLH142 acts downstream of UDT1 and GAMYB and works as a 'hub' in these two pollen pathways. We show that GAMYB modulates bHLH142 expression through specific binding to the MYB motif of the bHLH142 promoter during the early stage of pollen development, while TDR acts as a transcriptional repressor of the GAMYB modulation of bHLH142 by binding to the E-box close to the MYB motif on the promoter. Altered expression of these transcription factors highlights that a tight, precise, and coordinated regulation among them is essential for normal pollen development. Most notably, we show that the regulatory pathways of GAMYB and UDT1 rely on bHLH142 in a direct and indirect manner, respectively, and function in different tissues with distinct biological roles during pollen development. This study advances our understanding of the molecular mechanisms of rice pollen development.


Assuntos
Oryza , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126662

RESUMO

Vanilla orchid, which is well-known for its flavor and fragrance, is cultivated in tropical and subtropical regions. This shade-loving plant is very sensitive to high irradiance. In this study, we show that vanilla chloroplasts started to have avoidance movement when blue light (BL) was higher than 20 µmol m-2s-1 and significant avoidance movement was observed under BL irradiation at 100 µmol m-2s-1 (BL100). The light response curve indicated that when vanilla was exposed to 1000 µmol m-2s-1, the electron transport rate (ETR) and photochemical quenching of fluorescence (qP) were significantly reduced to a negligible amount. We found that if a vanilla orchid was irradiated with BL100 for 12 days, it acquired BL-acclimation. Chloroplasts moved to the side of cells in order to reduce light-harvesting antenna size, and chloroplast photodamage was eliminated. Therefore, BL-acclimation enhanced vanilla orchid growth and tolerance to moderate (500 µmol m-2s-1) and high light (1000 µmol m-2s-1) stress conditions. It was found that under high irradiation, BL-acclimatized vanilla maintained higher ETR and qP capacity than the control without BL-acclimation. BL-acclimation induced antioxidant enzyme activities, reduced ROS accumulation, and accumulated more carbohydrates. Moreover, BL-acclimatized orchids upregulated photosystem-II-associated marker genes (D1 and PetC), Rubisco and PEPC transcripts and sustained expression levels thereof, and also maximized the photosynthesis rate. Consequently, BL-acclimatized orchids had higher biomass. In short, this study found that acclimating vanilla orchid with BL before transplantation to the field might eliminate photoinhibition and enhance vanilla growth and production.


Assuntos
Clorofila/metabolismo , Cloroplastos/metabolismo , Estiolamento , Luz , Fotossíntese , Vanilla/crescimento & desenvolvimento , Cloroplastos/efeitos da radiação , Fluorescência , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Vanilla/metabolismo , Vanilla/efeitos da radiação
3.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859101

RESUMO

The moth orchid is an important ornamental crop. It is very sensitive to high light irradiation due to photoinhibition. In this study, young orchid tissue culture seedlings and 2.5" potted plants pretreated under blue light (BL, λmax = 450 nm) at 100 µmol m-2 s-1 for 12 days (BL acclimation) were found to have an increased tolerance to high light irradiation. After BL acclimation, orchids had an increased anthocyanin accumulation, enhanced chloroplast avoidance, and increased chlorophyll fluorescence capacity whenever they were exposed to high light of 1000 µmol m-2 s-1 for two weeks (HL). They had higher Fv/Fm, electron transport rate (ETR), chlorophyll content, catalase activity and sucrose content when compared to the control without BL acclimation. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that transcript levels of phototropins, D1, RbcS, PEPCK, Catalase and SUT2 were upregulated in the BL-acclimated orchids. Consequently, BL acclimation orchids had better growth when compared to the control under long-term high light stress. In summary, this study provides a solution, i.e., BL acclimation, to reduce moth orchid photoinhibition and enhance growth before transplantation of the young tissue culture seedlings and potted plants into greenhouses, where they usually suffer from a high light fluctuation problem.


Assuntos
Luz/efeitos adversos , Orchidaceae/fisiologia , Fotossíntese/efeitos da radiação , Proteínas de Plantas/genética , Aclimatação/efeitos da radiação , Animais , Antocianinas/metabolismo , Catalase/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Transporte de Elétrons/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Orchidaceae/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Sacarose/metabolismo
4.
Front Plant Sci ; 8: 1258, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769961

RESUMO

Male sterility is important for hybrid seed production. Pollen development is regulated by a complex network. We previously showed that knockout of bHLH142 in rice (Oryza sativa) causes pollen sterility by interrupting tapetal programmed cell death (PCD) and bHLH142 coordinates with TDR to modulate the expression of EAT1. In this study, we demonstrated that overexpression of bHLH142 (OE142) under the control of the ubiquitin promoter also leads to male sterility in rice by triggering the premature onset of PCD. Protein of bHLH142 was found to accumulate specifically in the OE142 anthers. Overexpression of bHLH142 induced early expression of several key regulatory transcription factors in pollen development. In particular, the upregulation of EAT1 at the early stage of pollen development promoted premature PCD in the OE142 anthers, while its downregulation at the late stage impaired pollen development by suppressing genes involved in pollen wall biosynthesis, ROS scavenging and PCD. Collectively, these events led to male sterility in OE142. Analyses of related mutants further revealed the hierarchy of the pollen development regulatory gene network. Thus, the findings of this study advance our understanding of the central role played by bHLH142 in the regulatory network leading to pollen development in rice and how overexpression of its expression affects pollen development. Exploitation of this novel functionality of bHLH142 may confer a big advantage to hybrid seed production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...