Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(6): e0198930, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29883473

RESUMO

There is an interest in identifying Anaphase Promoting-Complex/Cyclosome (APC/C) inhibitors that lead to sensitivity to microtubule poisons as a strategy for targeting cancer cells. Using budding yeast Saccharomyces cerevisiae, peptides derived from the Mitotic Arrest Deficient 2 (Mad2)-binding motif of Cell Division Cycle 20 (Cdc20) were observed to inhibit both Cdc20- and CDC20 Homology 1 (Cdh1)-dependent APC/C activity. Over expression of peptides in vivo led to sensitivity to a microtubule poison and, in a recovery from a microtubule poison arrest, delayed degradation of yeast Securin protein Precocious Dissociation of Sisters 1 (Pds1). Peptides with mutations in the Cdc20 activating KILR-motif still bound APC/C, but lost the ability to inhibit APC/C in vitro and lost the ability to induce sensitivity to a microtubule poison in vivo. Thus, an APC/C binding and activation motif that promotes mitotic progression, namely the Cdc20 KILR-motif, can also function as an APC/C inhibitor when present in excess. Another activator for mitotic progression after recovery from microtubule poison is p31comet, where a yeast predicted open-reading frame YBR296C-A encoding a 39 amino acid predicted protein was identified by homology to p31comet, and named Tiny Yeast Comet 1 (TYC1). Tyc1 over expression resulted in sensitivity to microtubule poison. Tyc1 inhibited both APC/CCdc20 and APC/CCdh1 activities in vitro and bound to APC/C. A homologous peptide derived from human p31comet bound to and inhibited yeast APC/C demonstrating evolutionary retention of these biochemical activities. Cdc20 Mad2-binding motif peptides and Tyc1 disrupted the ability of the co-factors Cdc20 and Cdh1 to bind to APC/C, and co-over expression of both together in vivo resulted in an increased sensitivity to microtubule poison. We hypothesize that Cdc20 Mad2-binding motif peptides, Tyc1 and human hp31 peptide can serve as novel molecular tools for investigating APC/C inhibition that leads to sensitivity to microtubule poison in vivo.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/antagonistas & inibidores , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Peptídeos/farmacologia , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antineoplásicos/uso terapêutico , Proteínas Cdc20/metabolismo , Proteínas Cdh1/metabolismo , Ensaios Enzimáticos , Inibidores Enzimáticos/metabolismo , Humanos , Proteínas Mad2/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico
2.
Mol Plant Pathol ; 17(5): 714-26, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26416342

RESUMO

The screening of differentially expressed genes in plants after pathogen infection can uncover the potential host factors required for the pathogens. In this study, an up-regulated gene was identified and cloned from Nicotiana benthamiana plants after Bamboo mosaic virus (BaMV) inoculation. The up-regulated gene was identified as a member of the Rab small guanosine triphosphatase (GTPase) family, and was designated as NbRABG3f according to its in silico translated product with high identity to that of RABG3f of tomato. Knocking down the expression of NbRABG3f using a virus-induced gene silencing technique in a protoplast inoculation assay significantly reduced the accumulation of BaMV. A transiently expressed NbRABG3f protein in N. benthamiana plants followed by BaMV inoculation enhanced the accumulation of BaMV to approximately 150%. Mutants that had the catalytic site mutation (NbRABG3f/T22N) or had lost their membrane-targeting capability (NbRABG3f/ΔC3) failed to facilitate the accumulation of BaMV in plants. Because the Rab GTPase is responsible for vesicle trafficking between organelles, a mutant with a fixed guanosine diphosphate form was used to identify the donor compartment. The use of green fluorescent protein (GFP) fusion revealed that GFP-NbRABG3f/T22N clearly co-localized with the Golgi marker. In conclusion, BaMV may use NbRABG3f to form vesicles derived from the Golgi membrane for intracellular trafficking to deliver unidentified factors to its replication site; thus, both GTPase activity and membrane-targeting ability are crucial for BaMV accumulation at the cell level.


Assuntos
Vírus do Mosaico/fisiologia , Nicotiana/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , DNA Complementar/genética , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Protoplastos/metabolismo , Frações Subcelulares/metabolismo , Regulação para Cima/genética , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...