Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37040674

RESUMO

Civil aviation flight crew and civil aviation air traffic controllers are prone to circadian rhythm abnormalities, which can lead to a slew of other maladies. It could endanger people's health and provide a serious threat to the safety of civil aviation flights if it is not appropriately evaluated and addressed. Early detection of rhythm irregularities and prompt treatment for particular populations that are vulnerable to rhythm disorders are crucial for enhancing civil aviation safety. In general, monitoring of the classical circadian rhythm biomarkers (melatonin or cortisol) in plasma or saliva is an effective way to evaluate the rhythm status. Due to the challenging sample procedure and the trauma of plasma, urine sample testing has received an increasing amount of attention. While, urine circadian rhythm biomarkers have seldom been examined, and the relationship between urinary steroid hormones and melatonin is still poorly understood. In most cases, hormones are determined by immunoassays respectively, mainly enzyme-linked immunosorbent assay (ELISA) or radioimmunoassay (RIA). There are also reports describing the liquid chromatography with tandem mass spectrometry (LC-MS/MS) technique as a method of melatonin or few steroid hormones quantification, however, the simultaneous detection of multiple rhythmic hormones in human urine is rarely reported. For the quantification of the rhythmic hormones in human urine, an accurate approach using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was devised in this work. Nine endogenous hormones (melatonin, 6-hydroxymelatonin, 6-sulfatoxymelatonin, cortisol, corticosterone, cortisone, testosterone, epitestosterone and androsterone), in human overnight urine, were quantified after solid phase extraction (SPE). A reverse phase HSS C18 column was used for chromatographic separation with a 9-minute gradient elution and deuterated analogues of each analyte were applied as internal standards. This method was successfully applied to the analysis of 596 overnight urine samples (23:00-9:00) collected from 84 air traffic controllers in the Beijing area during shift work. This study's findings showed a clear correlation not only between melatonin and its metabolites; cortisol-related metabolites, but also between melatonin metabolites and endogenous metabolites upstream and downstream of cortisol, implying that these two categories of hormones can be used as potential biological rhythm indicators to provide circadian rhythm data support for future studies on circadian rhythm disorders.


Assuntos
Hidrocortisona , Melatonina , Humanos , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Ritmo Circadiano , Esteroides , Biomarcadores , Cromatografia Líquida de Alta Pressão/métodos
2.
Digital Chinese Medicine ; (4): 285-294, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-997649

RESUMO

@#[Objective] To investigate the evolution of inflammation under conditions and the effects of ginsenosides on macrophages subjected to the simulated weightlessness, with the aim of mitigating the inflammation. [Methods] Initially, genes related to weightlessness, inflammation, and immunity were identified in the GeneCards database. Then, Search Tool for the Retrieval of Interaction Gene/Proteins (STRING) protein network analysis was conducted to determine the core targets involved in the weightlessness-induced inflammation. Subsequently, Label-Free Quantitative (LFQ) proteomics was carried out to discern the distinctive genes within ginsenoside-treated Tohoku Hospital Pediatrics-1 (THP-1) cells. Next, utilizing the outcomes of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, the biological processes and signaling pathways in which ginsenosides predominately engaged were scrutinized, and the primary targets of ginsenosides in combating weightlessness-induced inflammation were examined. Finally, enzyme-linked immunosorbent assay (ELISA) was performed to detect the secretion levels of interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α from lipopolysaccharide (LPS)-induced THP-1 cells under simulated weightlessness conditions, as well as during the weightlessness recovery period following treatment with ginsenosides. [Results] A total of 2 933 genes associated with inflammation, 425 genes linked to weightlessness, and 4 564 genes connected to immunity were retrieved from the GeneCards database. Protein-protein interaction (PPI) networks were generated to identify pivotal targets associated with weightlessness-induced inflammation such as IL-1β, IL-6, TNF, and albumin (ALB). It was found that ginsenosides primarily participated in the regulation of various inflammationrelated signaling pathways and pathways related to pathogenic microorganism infections. Moreover, it has a significant impact on the expression of proteins such as cluster of differentiation 40 (CD40), IL-1β, and poly ADP-ribose polymerase 1 (PARP1). As revealed in the simulated weightlessness cell test, ginsenosides exhibited a remarkable capacity to attenuate the secretion of inflammatory factors, specifically IL-6 and TNF-α (P < 0.000 1), in THP-1 macrophages following induction by LPS under simulated weightlessness conditions. In addition, it reduced the secretion of IL-1β, IL-6, IL-8, and TNF-α (P < 0.000 1) during the weightlessness recovery phase [Conclusion] Weightlessness can disrupt several inflammation-related signaling pathways, but ginsenosides were shown to mitigate the release of various inflammatory factors in macrophages subjected to simulated weightlessness, thereby exerting a protective role against inflammation. This study has laid a theoretical groundwork for further exploring the potential application of ginsenosides in safeguarding against LPS induced inflammation in a weightlessness environment.

3.
Front Pharmacol ; 12: 604009, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867309

RESUMO

Background: Viral pneumonia is one of the most serious respiratory diseases, and multicomponent traditional Chinese medicines have been applied in the management of infected patients. As a representative TCM, HouYanQing (HYQ) oral liquid shows antiviral activity. However, the unclear mechanisms, as well as the ambiguous clinical effects, limit widespread application of this treatment. Therefore, in this study, a proteomics-based approach was utilized to precisely investigate its efficacy. Methods: Based on the efficacy evaluation of HYQ in a mouse model of pneumonia caused by influenza A virus (H1N1) and the subsequent proteomics analysis, specific signatures regulated by HYQ treatment of viral pneumonia were identified. Results: Experimental verifications indicate that HYQ may show distinctive effects in viral pneumonia patients, such as elevated galectin-3-binding protein and glutathione peroxidase 3 levels. Conclusion: This study provides a precise investigation of the efficacy of a multicomponent drug against viral pneumonia and offers a promising alternative for personalized management of viral pneumonia.

4.
Front Pharmacol ; 12: 670335, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803663

RESUMO

Gastrointestinal disorder (GID) is a global health disease which leads to heavy public medical burden. Disorders in the intestinal flora have been found in gastrointestinal disorder patients. However, the interaction between GID and the intestinal flora in faecal has not been studied comprehensively. In addition, multicomponent drugs represented by traditional Chinese medicine (TCM) are widely used for treating GID, but their modulation of the intestinal flora has not been investigated. Therefore, in this study, a high-throughput sequencing strategy was used to investigate alterations in the intestinal flora in a rat GID model, followed by an investigation of the modulation by a representative TCM, Xiaoerfupi (XEFP) granule. The results showed that in rats with GID, the relative abundances of Erysipelotrichaceae, Lachnospiraceae, Streptococcaceae increased and that of Ruminococcaceae decreased. At the macro level, the levels of LysoPC(16:0), LysoPC(20:2), LysoPC(15:0), LysoPC(20:2 (11Z, 14Z)), LysoPC(20:1), LysoPC(15:0), LysoPC(20:0) and LysoPE (0:0/20:0) in serum increased and levels of PC(36:4), PC(38:4), PC(o-36;4), PE (MonoMe(13,5)/MonoMe(11,5)) decreased. The imbalance of metabolites was restored by XEFP through ether lipid metabolism pathway. Increase in the phyla Firmicutes/Bacteroidetes (F/B) ratio of the GID rats was restored by XEFP as well. Moreover, XEFP can relief the symptoms of GID rats by increasing bacteria Ruminococcaceae and decreasing Streptococcaceae, Erysipelotrichaceae and Lachnospiraceae in faecal microbiota level. This study represents a comprehensive survey of the interaction between GID and the intestinal flora and a systematic evaluation of modulation by a multicomponent drug.

5.
Front Pharmacol ; 11: 1337, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982747

RESUMO

The aim of this study was to investigate the precise clinical use of Sinitang decoction (SNT) in ulcerative colitis (UC). Network pharmacology-based analysis of the drug components-targets-diseases-pathways was used to predict the possible clinical applications of SNT. Next, 2,4,6-trinitrobenzenesulfonic acid (TNBS) was used to establish a rat model of UC, and the efficacy of SNT against UC was tested, followed by a proteomic analysis of the specific signatures regulated by SNT against UC. SNT was predicted to be effective in inflammatory bowel disease, UC, and several other diseases. In the rats with UC, SNT decreased the disease activity index and colon mucosal damage index compared to the untreated UC model rats. Additionally, SNT reversed the upregulated levels of serum tumor necrosis factor (TNF)-α, prostaglandin E2 (PGE2), interleukin (IL)-6, and nitric oxide (NO) in UC model rats. The proteomic analysis identified 78 proteins that were differentially regulated by SNT in the rats with UC, which were associated with the Gene Ontology terms sulfur compound binding, calcium ion binding, and Toll-like receptor (TLR)-4 binding. Among these differentially regulated proteins, C-reactive protein (CRP) and collagen alpha-1(XII) chain (COL12A1) were found to be signature proteins associated with the efficacy of SNT against UC. This study represents the first precise investigation of the efficacy and mechanisms of SNT against UC, and shows that SNT is a promising candidate for personalized management of UC.

6.
Oxid Med Cell Longev ; 2020: 5879852, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414894

RESUMO

Cerebral ischemia has led to a high rate of both disability and mortality with massive healthcare costs. Although transcriptional regulation is typically mediated by different combinations of TFs, a combined regulatory unit to synergistically activate transcription has remained unclear in cerebral ischemia, especially in different drug treatments. In this study, TFs alterations after 6 h cerebral ischemic injury and repair were performed by a concatenated tandem array of consensus transcription factor response elements (catTFREs), and vital TFs were obtained by TFs-target imbalanced network. Drug intervention used Danhong injection (DHI) and BNC (BuChang NaoXinTong Capsules), which has been widely prescribed in Chinese herb medicine for the treatment of cerebrovascular and cardiovascular diseases. There were 198 TFs identified after 6 h MCAO operation, and six TFs (Sox2, Smad3, FoxO1, Creb1, Egr,1 and Smad4) were considered as critical TFs in response to cerebral ischemia. Moreover, Smad3 was identified as a hub TF among six vital TFs, and the transcription activity of Smad3 was further verified. These 6 TFs were all reversed by DHI or BNC, indicating different medications may regulate different transcription factors through TF synergy. Moreover, validation results indicated that Smad3 was a putative target TF for DHI and BNC-mediated protection against cerebral ischemia. The observations of the present study provide a fresh understanding of biomolecules and possible new avenues for therapeutic interventions, in addition to the new intervention pattern for different treatments for ischemia stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Medicamentos de Ervas Chinesas/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Cápsulas , Infarto Cerebral/metabolismo , Cromatografia Líquida , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Fatores de Tempo , Fatores de Transcrição/metabolismo , Tripsina
7.
Biomed Pharmacother ; 120: 109442, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546083

RESUMO

AIM: To evaluate whether Xiaoerfupi (XEFP), a traditional Chinese medicine formula, can ameliorate functional dyspepsia (FD) through regulation of the HTR3A and c-FOS. METHOD: The FD rat model was established through administration of iodoacetamide (IA) and interval fasting. XEFP group rats received XEFP for 3 weeks. Detection of gastric emptying and gastrin were performed to assess the interventional effect of XEFP. The constituents of XEFP were submitted to BATMAN-TCM, an online bioinformatics analysis tool, to predict the targets related to dyspepsia. Furthermore, the prediction was validated via Western blot assay. RESULTS: XEFP enhanced gastric emptying of rats (XEFP middle dose vs. FD model: 71.87 ±â€¯15.21% vs. 30.07 ±â€¯12.76%, P <  0.01) and simultaneously increased gastrin in FD rats (XEFP middle dose vs. FD model: 63.61 ± 17.90 vs. 26.14 ± 7.78 pg/ml, P <  0.01). KEGG enrichment analysis revealed that the neuroactive ligand-receptor interaction was successfully enriched (P-value = 2.2E-13, Benjamini = 2.0E-11). Combining different Bioinformatics analysis implied that XEFP regulates HTR3A and c-FOS. Subsequently molecular biological studies confirmed that the expression of HTR3A and c-FOS in the model group was upregulated in rats in comparison with the control group. Furthermore, the expression of HTR3A and c-FOS in the XEFP group (middle dose) compared with the model group was significantly reduced (P <  0.01). CONCLUSION: XEFP may ameliorate FD through regulation of the HTR3A and c-FOS.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Dispepsia/tratamento farmacológico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Animais , Dispepsia/patologia , Esvaziamento Gástrico/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...