Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1376579, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686113

RESUMO

Background: Plasmodiophora brassicae is an ever-increasing threat to cruciferous crop production worldwide. Aims and methods: This study investigated the impact of pre-soil fumigation with ammonium bicarbonate (N) and lime (NB) to manage clubroot disease in Chinese cabbage through 16S rRNA gene amplification sequencing. Results: We found that soil fumigation with N and NB suppressed disease incidence by reducing the soil acidity and population of P. brassicae in the rhizosphere. Minimum disease incidence and maximum relative control effect of about 74.68 and 66.28% were achieved in greenhouse and field experiments, respectively, under the combined application of ammonium bicarbonate and lime (LNB) as compared with N, NB, and control (GZ). Microbial diversity analysis through Miseq sequencing proved that pre-soil fumigation with N, NB, and LNB clearly manipulated rhizosphere microbial community composition and changed the diversity and structure of rhizosphere microbes compared with GZ. Bacterial phyla such as Proteobacteria, Bacteriodetes, and Acidobacteria and fungal phyla including Olpidiomycota and Ascomycota were most dominant in the rhizosphere of Chinese cabbage plants. Soil fumigation with N and NB significantly reduced the abundance of clubroot pathogen at genus (Plasmodiophora) level compared with GZ, while decreased further under combined application LNB. Microbial co-occurrence network analysis showed a highly connected and complex network and less competition for resources among microbes under combined application LNB. Conclusion: We conclude that for environmentally friendly and sustainable agriculture, soil fumigation with combined ammonium bicarbonate and lime plays a crucial role in mitigating Chinese cabbage clubroot disease by alleviating soil pH, reducing pathogen population, and manipulating the rhizosphere microbiome.

2.
Life (Basel) ; 14(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541611

RESUMO

Leaf-blight disease caused by the Fusarium oxysporum is an emerging problem in Dendrobium chrysotoxum production in China. Symptoms of leaf blight were observed on seedlings of D. chrysotoxum cultivated in a nursery in Ruili City, Yunnan Province, China. In this study, we isolated the Fusarium sp. associated with leaf-blight disease of D. chrysotoxum from the diseased seedlings. A pathogenicity test was performed to fulfill Koch's postulates to confirm the pathogenicity of isolated strains and identified using morphological and molecular techniques. The results revealed that all four isolated Fusarium sp. isolates (DHRL-01~04) produced typical blight symptoms followed by marginal necrosis of leaves on the D. chrysotoxum plants. On the PDA medium, the fungal colony appeared as a white to purplish color with cottony mycelium growth. Microconidia are oval-shaped, whereas macroconidia are sickle-shaped, tapering at both ends with 2-4 septations. The phylogenetic trees were construed based on internal transcribed spacer (ITS), translation elongation factor (EF-1α), and RNA polymerase subunit genes RPB1 and RPB2 genes, respectively, and blasted against the NCBI database for species confirmation. Based on the NCBI database's blast results, the isolates showed that more than 99% identify with Fusarium oxysporum. To our knowledge, this is the first comprehensive report on the identification of Fusarium oxysporum as the causal agent of Dendrobium chrysotoxum leaf blight in Yunnan Province, China, based on morphological and molecular characteristics.

3.
Curr Med Imaging ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178675

RESUMO

Dual-energy computed tomography (DECT) applies two energy spectra distributions to collect raw data based on traditional CT imaging. The application of hepatobiliary imaging, has the advantages of optimizing the scanning scheme, improving the imaging quality, highlighting the disease characterization, and increasing the detection rate of lesions. In order to summarize the clinical application value of DECT in hepatobiliary diseases, we searched the technical principles of DECT and its existing studies, case reports, and clinical guidelines in hepatobiliary imaging from 2010 to 2023 (especially in the past 5 years) through PubMed and CNKI, focusing on the clinical application of DECT in hepatobiliary diseases, including liver tumors, diffuse liver lesions, and biliary system lesions. The first part of this article briefly describes the basic concept and technical advantages of DECT. The following will be reviewed:the detection of lesions, diagnosis and differential diagnosis of lesions, hepatic steatosis, quantitative analysis of liver iron, and analyze the advantages and disadvantages of DECT in hepatobiliary imaging. Finally, the contents of this paper are summarized and the development prospect of DECT in hepatobiliary imaging is prospected.

4.
Front Plant Sci ; 14: 1267132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192696

RESUMO

Background: Angular leaf spot disease caused by plant pathogenic bacterium Xanthomonas fragariae seriously threatens strawberry crop production globally. Methods: In this study, we sequenced the whole genome of X. fragariae YM2, isolated from Yunnan Province, China. In addition, we performed a comparative genome analysis of X. fragariae YM2 with two existing strains of X. fragariae YL19 and SHQP01 isolated from Liaoning and Shanghai, respectively. Results: The results of Nanopore sequencing showed that X. fragariae YM2 comprises one single chromosome with a contig size of 4,263,697 bp, one plasmid contig size of 0.39 Mb, a GC content ratio of 62.27%, and 3,958 predicted coding genes. The genome of YM2 comprises gum, hrp, rpf, and xps gene clusters and lipopolysaccharide (LPS), which are typical virulence factors in Xanthomonas species. By performing a comparative genomic analysis between X. fragariae strains YM2, YL19, and SHQP01, we found that strain YM2 is similar to YL19 and SHQP01 regarding genome size and GC contents. However, there are minor differences in the composition of major virulence factors and homologous gene clusters. Furthermore, the results of collinearity analysis demonstrated that YM2 has lower similarity and longer evolutionary distance with YL19 and SHQP01, but YL19 is more closely related to SHQP01. Conclusions: The availability of this high-quality genetic resource will serve as a basic tool for investigating the biology, molecular pathogenesis, and virulence of X. fragariae YM2. In addition, unraveling the potential vulnerabilities in its genetic makeup will aid in developing more effective disease suppression control measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA