Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 865184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35879955

RESUMO

Land use change obviously changes the plant community composition and soil properties of grasslands and thus affects multiple functions and services of grassland ecosystems. However, the response mechanisms of soil microorganisms, key drivers of the nutrient cycle and other soil functions during changes in grassland use type and associated vegetation are not well understood. In this study, Illumina high-throughput sequencing was used to analyze the changes in the soil microbial community structure of four grassland use types: exclosure (EL), mowed land (ML), grazed land (GL), and farmland (FL) in the Songnen Plain of Northeast China. The results showed that the FL and EL had significantly higher soil total nitrogen (TN) and lower soil electrical conductivity (EC) and pH than GL and ML. In contrast, the GL and ML had higher soil bulk density (BD) and organic matter, respectively, than the other land use types. In addition, the values of the Shannon diversity and Pielou's evenness indexes were highest in the EL of all the land use types. Based on the high-throughput sequencing results, we observed high levels of α diversity in the FL for both bacteria and fungi. A structural equation model (SEM) revealed that pH and EC had a direct and positive effect on the bacterial community structure and composition. In addition, plant taxonomic diversity (according to the Shannon diversity and Pielou's evenness indexes) indirectly affected the bacterial community composition via soil pH and EC. Notably, fungal composition was directly and positively correlated with soil nutrients and the value of Pielou's evenness index changed with land use type. In conclusion, soil properties and/or plant diversity might drive the changes in the soil microbial community structure and composition in different grassland use types.

2.
Front Plant Sci ; 12: 704511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335668

RESUMO

Carex meyeriana lowland meadow is an important component of natural grasslands in Hulun Buir. However, in Hulun Buir, fewer studies have been conducted on C. meyeriana lowland meadows than on other grassland types. To determine the most appropriate utilization mode for C. meyeriana lowland meadows, an experiment was conducted in Zhalantun city, Hulun Buir. Unused, moderately grazed, heavily grazed and mowed meadow sites were selected as the research objects. The analysis of experimental data from 4 consecutive years showed that relative to the other utilization modes, mowing and moderate grazing significantly increased C. meyeriana biomass. Compared with non-utilization, the other three utilization modes resulted in a higher plant diversity, and the moderately grazed meadow had the highest plant community stability. Moreover, principal component analysis (PCA) showed that among the meadow sites, the mowed meadow had the most stable plant community and soil physicochemical properties. Structural equation modeling (SEM) showed that grazing pressure was less than 0.25 hm2/sheep unit and that plant biomass in C. meyeriana lowland meadow increases with increasing grazing intensity, temperature and precipitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...