Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Osteoporos Int ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953947

RESUMO

Our study showed that B vitamins did not have significant effect on fracture incidence, bone mineral density, and bone turnover markers. However, the research data of B vitamins on bone mineral density and bone turnover markers are limited, and more clinical trials are needed to draw sufficient conclusions. PURPOSE: The objective of this study was to identify the efficacy of B vitamin (VB) (folate, B6, and B12) supplements on fracture incidence, bone mineral density (BMD), and bone turnover markers (BTMs). METHODS: A comprehensive search was performed in PubMed, MEDLINE, EMBASE, Cochrane databases, and ClinicalTrials.gov up to September 4, 2023. The risk of bias was assessed according to Cochrane Handbook and the quality of evidence was assessed according to the GRADE system. We used trial sequential analysis (TSA) to assess risk of random errors and Stata 14 to conduct sensitivity and publication bias analyses. RESULTS: Data from 14 RCTs with 34,700 patients were extracted and analyzed. The results showed that VBs did not significantly reduce the fracture incidence (RR, 1.06; 95% CI, 0.95 - 1.18; p = 0.33; I2 = 40%) and did not affect BMD in lumbar spine and femur neck. VBs had no significant effect on bone specific alkaline phase (a biomarker for bone formation), but could increase the serum carboxy-terminal peptide (a biomarker for bone resorption) (p = 0.009; I2 = 0%). The TSA showed the results of VBs on BMD and BTMs may not be enough to draw sufficient conclusions due to the small number of sample data included and needed to be demonstrated in more clinical trials. The inability of VBs to reduce fracture incidence has been verified by TSA as sufficient. Sensitivity analysis and publication bias assessment proved that our meta-analysis results were stable and reliable, with no significant publication bias. CONCLUSIONS: Available evidence from RCTs does not support VBs can effectively influence osteoporotic fracture risk, BMD, and BTMs. TRIAL REGISTRATION: PROSPERO registration number: CRD42023427508.

2.
Phys Rev Lett ; 132(22): 226003, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38877959

RESUMO

The nature of the anomalous metal state has been a major puzzle in condensed matter physics for more than three decades. Here, we report systematic investigation and modulation of the anomalous metal states in high-temperature interface superconductor FeSe films on SrTiO_{3} substrate. Remarkably, under zero magnetic field, the anomalous metal state persists up to 20 K in pristine FeSe films, an exceptionally high temperature standing out from previous observations. In stark contrast, for the FeSe films with nanohole arrays, the characteristic temperature of the anomalous metal state is considerably reduced. We demonstrate that the observed anomalous metal states originate from the quantum tunneling of vortices adjusted by the Ohmic dissipation. Our work offers a perspective for understanding the origin and modulation of the anomalous metal states in two-dimensional bosonic systems.

3.
Nat Commun ; 15(1): 4470, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796520

RESUMO

Molecular ferroelectrics are attracting great interest due to their light weight, mechanical flexibility, low cost, ease of processing and environmental friendliness. These advantages make molecular ferroelectrics viable alternatives or supplements to inorganic ceramics and polymer ferroelectrics. It is expected that molecular ferroelectrics with good performance can be fabricated, which in turns calls for effective chemical design strategies in crystal engineering. To achieve so, we propose a hydrogen bond modification method by introducing the hydroxyl group, and successfully boost the phase transition temperature (Tc) by at least 336 K. As a result, the molecular ferroelectric 1-hydroxy-3-adamantanammonium tetrafluoroborate [(HaaOH)BF4] can maintain ferroelectricity until 528 K, a Tc value much larger than that of BTO (390 K). Meanwhile, micro-domain patterns, in stable state for 2 years, can be directly written on the film of (HaaOH)BF4. In this respect, hydrogen bond modification is a feasible and effective strategy for designing molecular ferroelectrics with high Tc and stable ferroelectric domains. Such an organic molecule with varied modification sites and the precise crystal engineering can provide an efficient route to enrich high-Tc ferroelectrics with various physical properties.

4.
Nat Commun ; 15(1): 4576, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811553

RESUMO

The flexible distribution network presents a promising architecture to accommodate highly integrated distributed generators and increasing loads in an efficient and cost-effective way. The distribution network is characterised by flexible interconnections and expansions based on soft open points, which enables it to dispatch power flow over the entire system with enhanced controllability and compatibility. Herein, we propose a multi-resource dynamic coordinated planning method of flexible distribution network that allows allocation strategies to be determined over a long-term planning period. Additionally, we establish a probabilistic framework to address source-load uncertainties, which mitigates the security risks of voltage violations and line overloads. A practical distribution network is adopted for flexible upgrading based on soft open points, and its cost benefits are evaluated and compared with that of traditional planning approaches. By adjusting the acceptable violation probability in chance constraints, a trade-off between investment efficiency and operational security can be realised.

5.
Adv Mater ; : e2401392, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821489

RESUMO

Anatomizing mixed-phases, referring to analyzing the mixing profiles and quantifying the phases' proportions in a material, which is of great significance in the genuine applications. Here, by using second-harmonic generation (SHG) polarimetry and piezoresponse force microscopy (PFM) techniques, this work elucidates the contributions and distributions of two different symmetric phases mixed in an archetype monoaxial molecular ferroelectric, diisopropylammonium chloride (DIPACl). The two competing phases are preferred in thermodynamics or kinetic process respectively, and this work evidences the switching behavior between the two competing phases facilitated by an external electrical field as opposed to a heating process. This research contributes novel insights into phase engineering in the field of molecular ferroelectrics and is poised to serve as a potent analytical tool for subsequent applications.

6.
Adv Sci (Weinh) ; 11(4): e2305016, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38037482

RESUMO

With outstanding advantages of chemical synthesis, structural diversity, and mechanical flexibility, molecular ferroelectrics have attracted increasing attention, demonstrating themselves as promising candidates for next-generation wearable electronics and flexible devices in the film form. However, it remains a challenge to grow high-quality thin films of molecular ferroelectrics. To address the above issue, a volume-confined method is utilized to achieve ultrasmooth single-crystal molecular ferroelectric thin films at the sub-centimeter scale, with the thickness controlled in the range of 100-1000 nm. More importantly, the preparation method is applicable to most molecular ferroelectrics and has no dependency on substrates, showing excellent reproducibility and universality. To demonstrate the application potential, two-dimensional (2D) transitional metal dichalcogenide semiconductor/molecular ferroelectric heterostructures are prepared and investigated by optical spectroscopic method, proving the possibility of integrating molecular ferroelectrics with 2D layered materials. These results may unlock the potential for preparing and developing high-performance devices based on molecular ferroelectric thin films.

7.
Nat Commun ; 14(1): 7155, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935701

RESUMO

The infinite-layer nickelates, isostructural to the high-Tc cuprate superconductors, have emerged as a promising platform to host unconventional superconductivity and stimulated growing interest in the condensed matter community. Despite considerable attention, the superconducting pairing symmetry of the nickelate superconductors, the fundamental characteristic of a superconducting state, is still under debate. Moreover, the strong electronic correlation in the nickelates may give rise to a rich phase diagram, where the underlying interplay between the superconductivity and other emerging quantum states with broken symmetry is awaiting exploration. Here, we study the angular dependence of the transport properties of the infinite-layer nickelate Nd0.8Sr0.2NiO2 superconducting films with Corbino-disk configuration. The azimuthal angular dependence of the magnetoresistance (R(φ)) manifests the rotational symmetry breaking from isotropy to four-fold (C4) anisotropy with increasing magnetic field, revealing a symmetry-breaking phase transition. Approaching the low-temperature and large-magnetic-field regime, an additional two-fold (C2) symmetric component in the R(φ) curves and an anomalous upturn of the temperature-dependent critical field are observed simultaneously, suggesting the emergence of an exotic electronic phase. Our work uncovers the evolution of the quantum states with different rotational symmetries in nickelate superconductors and provides deep insight into their global phase diagram.

8.
Nat Commun ; 14(1): 6998, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919274

RESUMO

Itinerant kagome lattice magnets exhibit many novel correlated and topological quantum electronic states with broken time-reversal symmetry. Superconductivity, however, has not been observed in this class of materials, presenting a roadblock in a promising path toward topological superconductivity. Here, we report that novel superconductivity can emerge at the interface of kagome Chern magnet TbMn6Sn6 and metal heterostructures when elemental metallic thin films are deposited on either the top (001) surface or the side surfaces. Superconductivity is also successfully induced and systematically studied by using various types of metallic tips on different TbMn6Sn6 surfaces in point-contact measurements. The anisotropy of the superconducting upper critical field suggests that the emergent superconductivity is quasi-two-dimensional. Remarkably, the interface superconductor couples to the magnetic order of the kagome metal and exhibits a hysteretic magnetoresistance in the superconducting states. Taking into account the spin-orbit coupling, the observed interface superconductivity can be a surprising and more realistic realization of the p-wave topological superconductors theoretically proposed for two-dimensional semiconductors proximity-coupled to s-wave superconductors and insulating ferromagnets. Our findings of robust superconductivity in topological-Chern-magnet/metal heterostructures offer a new direction for investigating spin-triplet pairing and topological superconductivity.

9.
ACS Nano ; 17(22): 22355-22370, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37930078

RESUMO

Burns are among the most common causes of trauma worldwide. Reducing the healing time of deep burn wounds has always been a major challenge. Traditional dressings not only require a lengthy medical procedure but also cause unbearable pain and secondary damage to patients. In this study, we developed an exudate-absorbing and antimicrobial hydrogel with a curcumin-loaded magnesium polyphenol network (Cur-Mg@PP) to promote burn wound healing. That hydrogel was composed of an ε-poly-l-lysine (ε-PLL)/polymer poly(γ-glutamic acid) (γ-PGA) hydrogel (PP) and curcumin-loaded magnesium polyphenol network (Cur-Mg). Because of the strong water absorption property of ε-PLL and γ-PGA, Cur-Mg@PP powder can quickly absorb the wound exudate and transform into a moist and viscous hydrogel, thus releasing payloads such as magnesium ion (Mg2+) and curcumin (Cur). The released Mg2+ and Cur demonstrated good therapeutic efficacy on analgesic, antioxidant, anti-inflammation, angiogenesis, and tissue regeneration. Our findings provide a strategy for accelerating burn wound healing.


Assuntos
Anti-Infecciosos , Queimaduras , Curcumina , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Hidrogéis/uso terapêutico , Magnésio , Cicatrização , Anti-Infecciosos/uso terapêutico , Queimaduras/tratamento farmacológico
10.
Signal Transduct Target Ther ; 8(1): 367, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752146

RESUMO

Lymph nodes (LNs) are important hubs for metastatic cell arrest and growth, immune modulation, and secondary dissemination to distant sites through a series of mechanisms, and it has been proved that lymph node metastasis (LNM) is an essential prognostic indicator in many different types of cancer. Therefore, it is important for oncologists to understand the mechanisms of tumor cells to metastasize to LNs, as well as how LNM affects the prognosis and therapy of patients with cancer in order to provide patients with accurate disease assessment and effective treatment strategies. In recent years, with the updates in both basic and clinical studies on LNM and the application of advanced medical technologies, much progress has been made in the understanding of the mechanisms of LNM and the strategies for diagnosis and treatment of LNM. In this review, current knowledge of the anatomical and physiological characteristics of LNs, as well as the molecular mechanisms of LNM, are described. The clinical significance of LNM in different anatomical sites is summarized, including the roles of LNM playing in staging, prognostic prediction, and treatment selection for patients with various types of cancers. And the novel exploration and academic disputes of strategies for recognition, diagnosis, and therapeutic interventions of metastatic LNs are also discussed.


Assuntos
Relevância Clínica , Linfonodos , Humanos , Metástase Linfática
11.
J Mater Chem B ; 11(36): 8666-8678, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37622289

RESUMO

Following the global COVID-19 pandemic, the incidence of tracheal epithelial injury is increasing. However, the repair of tracheal epithelial injury remains a challenge due to the slow renewal rate of tracheal epithelial cells (TECs). In traditional nebulized inhalation treatments, drugs are enriched in the lungs or absorbed into the blood, reducing drug concentration at the tracheal injury site. In this study, we prepared an epidermal growth factor (EGF)-loaded gamma-polyglutamic acid (γ-PGA)/epsilon-poly-L-lysine (ε-PLL) (PP) hydrogel (EGF@PP) to promote the repair of tracheal epithelial injury. Epidermal growth factor promotes the proliferation of TECs and enhances vascularization, thereby accelerating injury repair. The PP hydrogel exhibits outstanding wet adhesion, slow drug release, and antibacterial and anti-inflammatory properties, making it suitable for application in the airways and creating an environment conducive to epithelial repair. Here, we established a rabbit model of tracheal injury using a laser to destroy the tracheal epithelium and delivered EGF@PP powder to the injury site under fiberoptic bronchoscopy guidance. Our findings revealed that this was an effective therapeutic strategy for accelerating the repair of tracheal epithelial injury.


Assuntos
COVID-19 , Fator de Crescimento Epidérmico , Animais , Humanos , Coelhos , Ácido Poliglutâmico , Hidrogéis/farmacologia , Pandemias , Polilisina
12.
J Mech Behav Biomed Mater ; 146: 106068, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37639934

RESUMO

Many biological materials, such as bone and nacre, exhibit remarkable combinations of stiffness, strength, toughness, and impact resistance over millions of years of evolution. They provide prototypes for designing high-performance artificial composites. However, the dynamic properties of biological materials under impact loading are still not clear. In this study, we establish a dynamic shear-lag model to explore the dynamic response and the energy dissipation capacity of bioinspired staggered composites with a viscoelastic matrix under impact loading. The time domain solution of the dynamic shear-lag model is derived. Then, the model is verified by comparing it with the results from the finite element method. The results demonstrate that matrix viscosity plays a significant role in dissipating the impact energy and enhances the wave transformation between adjacent tablets. Furthermore, there exists an optimal viscosity coefficient to achieve an excellent balance between the rate and efficiency of energy dissipation. The model and the results can not only reveal the energy dissipation property of biological materials but also provide guidelines for the design and optimization of high-performance composites.


Assuntos
Nácar , Viscosidade
13.
Adv Mater ; 35(19): e2211584, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840984

RESUMO

Achieving a periodic domain structure in ferroelectric materials to tailor the macroscopic properties or realize new functions has always been a hot topic. However, methods to construct periodic domain structures, such as epitaxial growth, direct writing by scanning tips, and the patterned electrode method, are difficult or inefficient to implement in emerging molecular ferroelectrics, which have the advantages of lightweight, flexibility, biocompatibility, etc. An efficient method for constructing and controlling periodic domain structures is urgently needed to facilitate the development of molecular ferroelectrics in nanoelectronic devices. In this work, it is demonstrated that large-area, periodic and controllable needle-like domain structures can be achieved in thin films of the molecular ferroelectric trimethylchloromethyl ammonium trichlorocadmium (TMCM-CdCl3 ) upon the application of tensile strain. The domain evolution under various tensile strains can be clearly observed, and such processes are accordingly identified. Furthermore, the domain wall exhibits a superior piezoelectric response, with up to fivefold enhancement compared to that of the pristine samples. Such large-area tunable periodic domain structure and abnormally strong piezoresponse are not only of great interests in fundamental studies, but also highly important in the future applications in functional molecular materials.

14.
Mater Horiz ; 10(3): 869-874, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36628648

RESUMO

The electrocaloric effect (ECE) is an efficient and environmentally friendly method for solid-state refrigeration driven by an electric field. However, disregarding the ECE performance, the mass of materials also limits the amount of energy transferred in the cooling process. While molecular ECE materials have been attracting intensive attention with their excellent ECE properties, most reported molecular compounds can only be utilized in the form of thin films or single crystals. Unlike inorganic ceramics, molecular thin films and single crystals are very difficult to prepare in a large amount, which greatly restrains the future application of those materials. In this work, we report an excellent molecular ECE material in the form of polycrystalline molecular ceramics. Such molecular ceramics are composed of plastic molecular ferroelectrics, and can fulfil the requirement of large mass, easy processing, excellent performance and low energy consumption. Our molecular ceramic of HQReO4 (HQ: protonated quinuclidine) demonstrates an isothermal entropy change of 5.8 J K-1 kg-1 and an adiabatic temperature change of 3.1 K. Notably, by a simple low-temperature pressing process without added adhesives (about 373 K), an HQReO4 molecular ceramic block can be obtained, and its ECE performance is observed to be comparable to that of single crystals, for the first time. This work proposes a new application form for molecular electrocaloric materials, which opens up new ideas for solid-state refrigeration.

15.
Minerva Pediatr (Torino) ; 75(1): 32-38, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27057822

RESUMO

BACKGROUND: Clinical and genetic features were analyzed in five pedigrees with Pelizaeus-Merzbacher-like disease (PMLD) to provide bases for genetic counseling and prenatal diagnosis. CONCLUSIONS: Six patients from five pedigrees were diagnosed with PMLD based on their clinical data. Six GJC2 novel mutations were found in this study, expanding the spectrum of GJC2 mutations. This is the second group of GJC2 mutations reported from six Chinese patients with PMLD. METHODS: Clinical data including medical history, physical signs, and auxiliary examinations were collected from six patients and their family numbers in five pedigrees with PMLD. Polymerase chain reaction and sequence analysis were used to amplify GJC2 and PLP1 alterations, while multiplex ligation-dependent probe amplification (MLPA) was performed to detect PLP1 dosage changes. The gene mutations were diagnosed for further analysis of the genetic features. RESULTS: A total of seven GJC2 mutations were identified in these patients, including two novel missense mutations (c.217C>T, p.Pro73Ser; c.1199C>A, p.Ala400Glu), one nonsense mutation (c.735C>A, p.Cys245X), three novel frameshift mutations (c.579delC, p.Gly193fsX17 and c.1296_1297insG, p.Gly433fsX59; c.689delG, p.Gly230AlafsX241), and one known missense mutation (c.814T>G, p.Tyr272Asp). Compound heterozygotes were found for P1-3, while homozygotes were found for P4-6 that were inherited from their parents with normal phenotypes except for P5 and P6, respectively. The c.814T>G (p.Tyr272Asp) mutation in P5 was de novo. A c.1199C>A (p.Ala400Glu) homozygous mutation in GJC2 was identified in P6. A heterozygous variation was found in his father and the wild type was seen in his mother.


Assuntos
Conexinas , Doenças Desmielinizantes , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Doença de Pelizaeus-Merzbacher , Humanos , População do Leste Asiático , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Mutação , Mutação de Sentido Incorreto , Doença de Pelizaeus-Merzbacher/genética , Conexinas/genética
16.
J Am Chem Soc ; 144(30): 13806-13814, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35816081

RESUMO

Ferroelectric domains and domain walls are unique characteristics of ferroelectric materials. Among them, charged domain walls (CDWs) are a special kind of peculiar microstructure that highly improve conductivity, piezoelectricity, and photovoltaic efficiency. Thus, CDWs are believed to be the key to ferroelectrics' future application in fields of energy, sensing, information storage, and so forth. Studies on CDWs are one of the most attractive directions in conventional inorganic ferroelectric ceramics. However, in newly emerged molecular ferroelectrics, which have advantages such as lightweight, easy preparation, simple film fabrication, mechanical flexibility, and biocompatibility, CDWs are rarely observed due to the lack of free charges. In inorganic ferroelectrics, doping is a traditional method to induce free charges, but for molecular ferroelectrics fabricated by solution processes, doping usually causes phase separation or phase transition, which destabilizes or removes ferroelectricity. To realize stable CDWs in molecular systems, we designed and synthesized an n-type molecular ferroelectric, 1-adamantanammonium hydroiodate. In this compound, negative charges are induced by defects in the I- vacancy, and CDWs can be achieved. Nanometer-scale CDWs that are stable at temperatures as high as 373 K can be "written" precisely by an electrically biased metal tip. More importantly, this is the first time that the charge diffusion of CDWs at variable temperatures has been investigated in molecular ferroelectrics. This work provides a new design strategy for n-type molecular ferroelectrics and may shed light on their future applications in flexible electronics, microsensors, and so forth.

17.
J Nanobiotechnology ; 20(1): 259, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672708

RESUMO

Patients with diabetic foot ulcers usually suffer from inefficient epithelisation and angiogenesis accompanied by chronic wound healing. Diabetic foot ulcers remain a major challenge in clinical medicine; however, traditional treatments are incapable of transdermal drug delivery, resulting in a low drug delivery rate. We report the development of Ti2C3 MXenes-integrated poly-γ-glutamic acid (γ-PGA) hydrogel microneedles to release asiaticoside (MN-MXenes-AS). Asiaticoside was loaded into PGA-MXenes hydrogel to facilitate cell proliferation while regulating angiogenesis. The characterisation and mechanical strength of the microneedles were investigated in vitro, and the wound-healing efficacy of the microneedles was confirmed in diabetic mice. MXenes significantly improved the mechanical strength of microneedles, while γ-PGA hydrogels provided a moist microenvironment for wound healing. Mice treated with MN-MXenes-AS demonstrated obvious improvements in wound healing process. We successfully fabricated an MXenes-integrated microneedle that possesses sufficient rigidity to penetrate the cuticle for subcutaneous drug delivery, thereby accelerating diabetic wound healing. We demonstrated that MN-MXenes-AS is effective in promoting growth both in vivo and in vitro. Collectively, our data show that MN-MXenes-AS accelerated the healing of diabetic foot ulcers, supporting the use of these microneedles in the treatment of chronic wounds.


Assuntos
Diabetes Mellitus Experimental , Pé Diabético , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Pé Diabético/tratamento farmacológico , Humanos , Hidrogéis , Camundongos , Triterpenos , Cicatrização
18.
Orphanet J Rare Dis ; 17(1): 137, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346287

RESUMO

BACKGROUND: The natural history and genotype-phenotype correlation of Pelizaeus-Merzbacher disease (PMD) of Chinese patients has been rarely reported. METHOD: Patients who met the criteria for PMD were enrolled in our study. Genomic analysis was conducted by multiplex ligation probe amplification (MLPA) and Sanger or whole-exome sequencing (WES). Natural history differences and genotype-phenotype correlations were analyzed. RESULT: A total of 111 patients were enrolled in our follow-up study. The median follow-up interval was 53 m (1185). Among PMD patients, developmental delay was the most common sign, and nystagmus and hypotonia were the most common initial symptoms observed. A total of 78.4% of the patients were able to control their head, and 72.1% could speak words. However, few of the patients could stand (9.0%) or walk (4.5%) by themselves. Nystagmus improved in more than half of the patients, and hypotonia sometimes deteriorated to movement disorders. More PLP1 point mutations patients were categorized into severe group, while more patients with PLP1 duplications were categorized into mild group (p < 0.001). Compared to patients in mild groups, those in the severe group had earlier disease onset and had acquired fewer skills at a later age. CONCLUSION: PMD patients have early disease onset with nystagmus and hypotonia followed by decreased nystagmus and movement disorders, such as spasticit. Patients with PLP1 duplication were more likely to be categorized into the mild group, whereas patients with point mutations were more likely to be categorized into the severe group.


Assuntos
Doença de Pelizaeus-Merzbacher , China , Seguimentos , Estudos de Associação Genética , Humanos , Proteína Proteolipídica de Mielina/genética , Doença de Pelizaeus-Merzbacher/diagnóstico , Doença de Pelizaeus-Merzbacher/genética
19.
J Nanobiotechnology ; 20(1): 60, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109862

RESUMO

The localization of invisible and impalpable small pulmonary nodules has become an important concern during surgery, since current widely used techniques for localization have a number of limitations, such as invasive features of hookwires and microcoils, and rapid diffusion after injection of indocyanine green (ICG). Lanthanide-based metal-organic frameworks (MOFs) have been proven as potential fluorescent agents because of their prominent luminescent characteristics, including large Stokes shifts, high quantum yields, long decay lifetimes, and undisturbed emissive energies. In addition, lanthanides, such as Eu, can efficiently absorb X-rays for CT imaging. In this study, we synthesized Eu-UiO-67-bpy (UiO = University of Oslo, bpy = 2,2'-bipyridyl) as a fluorescent dye with a gelatin-methacryloyl (GelMA) hydrogel as a liquid carrier. The prepared complex exhibits constant fluorescence emission owing to the luminescent characteristics of Eu and the stable structure of UiO-67-bpy with restricted fluorescence diffusion attributed to the photocured GelMA. Furthermore, the hydrogel provides stiffness to make the injection site tactile and improve the accuracy of localization and excision. Finally, our complex enables fluorescence-CT dual-modal imaging of the localization site.


Assuntos
Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Difusão , Gelatina/química , Hidrogéis/química
20.
Neuroscience ; 476: 60-71, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34506833

RESUMO

Among the hypomyelinating leukodystrophies, Pelizaeus-Merzbacher disease (PMD) is a representative disorder. The disease is caused by different types of PLP1 mutations, among which PLP1 duplication accounts for ∼70% of the mutations. Previous studies have shown that PLP1 duplications lead to PLP1 retention in the endoplasmic reticulum (ER); in parallel, recent studies have demonstrated that PLP1 duplication can also lead to mitochondrial dysfunction. As such, the respective roles and interactions of the ER and mitochondria in the pathogenesis of PLP1 duplication are not clear. In both PLP1 patients' and healthy fibroblasts, we measured mitochondrial respiration with a Seahorse XF Extracellular Analyzer and examined the interactions between the ER and mitochondria with super-resolution microscopy (spinning-disc pinhole-based structured illumination microscopy, SD-SIM). For the first time, we demonstrated that PLP1 duplication mutants had closer ER-mitochondrion interfaces mediated through structural and morphological changes in both the ER and mitochondria-associated membranes (MAMs). These changes in both the ER and mitochondria then led to mitochondrial dysfunction, as reported previously. This work highlights the roles of MAMs in bridging PLP1 expression in the ER and pathogenic dysfunction in mitochondria, providing novel insight into the pathogenicity of mitochondrial dysfunction resulting from PLP1 duplication. These findings suggest that interactions between the ER and mitochondria may underlie pathogenic mechanisms of hypomyelinating leukodystrophies diseases at the organelle level.


Assuntos
Proteína Proteolipídica de Mielina , Doença de Pelizaeus-Merzbacher , Retículo Endoplasmático , Humanos , Mitocôndrias , Mutação , Proteína Proteolipídica de Mielina/genética , Doença de Pelizaeus-Merzbacher/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...