Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Adv ; 10(4): eadj2629, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38266083

RESUMO

Photoionization of matter is one of the fastest electronic processes in nature. Experimental measurements of photoionization dynamics have become possible through attosecond metrology. However, all experiments reported to date contain a so-far unavoidable measurement-induced contribution, known as continuum-continuum (CC) or Coulomb-laser-coupling delay. In traditional attosecond metrology, this contribution is nonadditive for most systems and nontrivial to calculate. Here, we introduce the concept of mirror symmetry-broken attosecond interferometry, which enables the direct and separate measurement of both the native one-photon ionization delays and the CC delays. Our technique solves the longstanding challenge of experimentally isolating these two contributions. This advance opens the door to the next generation of accurate measurements and precision tests that will set standards for benchmarking the accuracy of electronic structure and electron-dynamics methods.

2.
Phys Rev Lett ; 130(25): 253202, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37418708

RESUMO

We report the experimental observation of quantum interference in the nuclear wave-packet dynamics driving ultrafast excitation-energy transfer in argon dimers below the threshold of interatomic Coulombic decay (ICD). Using time-resolved photoion-photoion coincidence spectroscopy and quantum dynamics simulations, we reveal that the electronic relaxation dynamics of the inner-valence 3s hole on one atom leading to a 4s or 4p excitation on the other one is influenced by nuclear quantum dynamics in the initial state, giving rise to a deep, periodic modulation on the kinetic-energy-release (KER) spectra of the coincident Ar^{+}-Ar^{+} ion pairs. Moreover, the time-resolved KER spectra show characteristic fingerprints of quantum interference effects during the energy-transfer process. Our findings pave the way to elucidating quantum-interference effects in ultrafast charge- and energy-transfer dynamics in more complex systems, such as molecular clusters and solvated molecules.


Assuntos
Polímeros , Transferência de Energia
4.
Phys Rev Lett ; 129(13): 133002, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36206434

RESUMO

We present the experimental observation of two-center interference in the ionization time delays of Kr_{2}. Using attosecond electron-ion-coincidence spectroscopy, we simultaneously measure the photoionization delays of krypton monomer and dimer. The relative time delay is found to oscillate as a function of the electron kinetic energy, an effect that is traced back to constructive and destructive interference of the photoelectron wave packets that are emitted or scattered from the two atomic centers. Our interpretation of the experimental results is supported by solving the time-independent Schrödinger equation of a 1D double-well potential, as well as coupled-channel multiconfigurational quantum-scattering calculations of Kr_{2}. This work opens the door to the study of a broad class of quantum-interference effects in photoionization delays and demonstrates the potential of attosecond coincidence spectroscopy for studying weakly bound systems.

5.
Sci Adv ; 7(49): eabj8121, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860540

RESUMO

Shape resonances play a central role in many areas of science, but the real-time measurement of the associated many-body dynamics remains challenging. Here, we present measurements of recoil frame angle-resolved photoionization delays in the vicinity of shape resonances of CF4. This technique provides insights into the spatiotemporal photoionization dynamics of molecular shape resonances. We find delays of up to ∼600 as in the ionization out of the highest occupied molecular orbital (HOMO) with a strong dependence on the emission direction and a pronounced asymmetry along the dissociation axis. Comparison with quantum-scattering calculations traces the asymmetries to the interference of a small subset of partial waves at low kinetic energies and, additionally, to the interference of two overlapping shape resonances in the HOMO-1 channel. Our experimental and theoretical results establish a broadly applicable approach to space- and time-resolved photoionization dynamics in the molecular frame.

6.
Opt Express ; 29(17): 27732-27749, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34615183

RESUMO

Reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) is one of the most widely used approaches to measure the time delays in photoionization. The time delay, which corresponds to a phase difference of two oscillating signals, is usually retrieved by cosine fitting or fast Fourier transform (FFT). We propose two estimators for the phase uncertainty of cosine fitting from the signal per se of an individual experiment: (i) σ(φ fit)≈B A2N, where B/A is the mean-value-to-amplitude ratio, and N is the total count number, and (ii) σ(φ fit)≈1-R 2 R 2 n bins, where nbins is the total number of bins in the time domain, and R2 is the coefficient of determination. The former estimator is applicable for the statistical fluctuation, while the latter includes the effects from various uncertainty sources, which is mathematically proven and numerically validated. This leads to an efficient and reliable approach to determining quantitative uncertainties in RABBITT experiments and evaluating the observed discrepancy among individual measurements, as demonstrated on the basis of experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA