Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958319

RESUMO

BACKGROUND: Cancer patients who are admitted to hospitals are at high risk of short-term deterioration due to treatment-related or cancer-specific complications. A rapid response system (RRS) is initiated when patients who are deteriorating or at risk of deteriorating are identified. This study was conducted to develop a deep learning-based early warning score (EWS) for cancer patients (Can-EWS) using delta values in vital signs. METHODS: A retrospective cohort study was conducted on all oncology patients who were admitted to the general ward between 2016 and 2020. The data were divided into a training set (January 2016-December 2019) and a held-out test set (January 2020-December 2020). The primary outcome was clinical deterioration, defined as the composite of in-hospital cardiac arrest (IHCA) and unexpected intensive care unit (ICU) transfer. RESULTS: During the study period, 19,739 cancer patients were admitted to the general wards and eligible for this study. Clinical deterioration occurred in 894 cases. IHCA and unexpected ICU transfer prevalence was 1.77 per 1000 admissions and 43.45 per 1000 admissions, respectively. We developed two models: Can-EWS V1, which used input vectors of the original five input variables, and Can-EWS V2, which used input vectors of 10 variables (including an additional five delta variables). The cross-validation performance of the clinical deterioration for Can-EWS V2 (AUROC, 0.946; 95% confidence interval [CI], 0.943-0.948) was higher than that for MEWS of 5 (AUROC, 0.589; 95% CI, 0.587-0.560; p < 0.001) and Can-EWS V1 (AUROC, 0.927; 95% CI, 0.924-0.931). As a virtual prognostic study, additional validation was performed on held-out test data. The AUROC and 95% CI were 0.588 (95% CI, 0.588-0.589), 0.890 (95% CI, 0.888-0.891), and 0.898 (95% CI, 0.897-0.899), for MEWS of 5, Can-EWS V1, and the deployed model Can-EWS V2, respectively. Can-EWS V2 outperformed other approaches for specificities, positive predictive values, negative predictive values, and the number of false alarms per day at the same sensitivity level on the held-out test data. CONCLUSIONS: We have developed and validated a deep learning-based EWS for cancer patients using the original values and differences between consecutive measurements of basic vital signs. The Can-EWS has acceptable discriminatory power and sensitivity, with extremely decreased false alarms compared with MEWS.

2.
Sci Rep ; 13(1): 9734, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322055

RESUMO

Most recent survival prediction has been based on TNM staging, which does not provide individualized information. However, clinical factors including performance status, age, sex, and smoking might influence survival. Therefore, we used artificial intelligence (AI) to analyze various clinical factors to precisely predict the survival of patients with larynx squamous cell carcinoma (LSCC). We included patients with LSCC (N = 1026) who received definitive treatment from 2002 to 2020. Age, sex, smoking, alcohol consumption, Eastern Cooperative Oncology Group (ECOG) performance status, location of tumor, TNM stage, and treatment methods were analyzed using deep neural network (DNN) with multi-classification and regression, random survival forest (RSF), and Cox proportional hazards (COX-PH) model for prediction of overall survival. Each model was confirmed with five-fold cross validation, and performance was evaluated using linear slope, y-intercept, and C-index. The DNN with multi-classification model demonstrated the highest prediction power (1.000 ± 0.047, 0.126 ± 0.762, and 0.859 ± 0.018 for slope, y-intercept, and C-index, respectively), and the prediction survival curve showed the strongest agreement with the validation survival curve, followed by DNN with regression (0.731 ± 0.048, 9.659 ± 0.964, and 0.893 ± 0.017, respectively). The DNN model produced with only T/N staging showed the poorest survival prediction. When predicting the survival of LSCC patients, various clinical factors should be considered. In the present study, DNN with multi-class was shown to be an appropriate method for survival prediction. AI analysis may predict survival more accurately and improve oncologic outcomes.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Neoplasias Laríngeas/patologia , Inteligência Artificial , Carcinoma de Células Escamosas/patologia , Estadiamento de Neoplasias , Neoplasias de Cabeça e Pescoço/patologia , Prognóstico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA