Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 204(Pt C): 112177, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34717945

RESUMO

Reverse thermally induced separation (RTIPS) was used to obtain a separation membrane with a better internal structure for a higher water flux and a surface that could easily form a hydration layer. In comparison to the traditional modification method, this work focused on the aspect that the internal structure obtained by changing the membrane-making method provided easier adhesion conditions for the dopamine/TiO2 hybrid nanoparticles (DA/TiO2 HNPs) obtained by biomimetic mineralization. It provided a basis for exploring the variation in adhesion with the water bath temperature and the amount of titanium added through the study of turbidity point, SEM images, water contact angle, thermogravimetric test, EDX, AFM, XPS, FTIR and other test results. The SEM images proved that the membrane obtained through the RTIPS method had a porous surface and spongy internal structure, furthermore, additional polymers were adsorbed. Use of EDX demonstrated that biomimetic mineralization prevented the production of agglomerated titanium dioxide. XPS and FTIR spectra confirmed the introduction and immobilization of HNP aggregation. Moreover, a decrease in the surface roughness and water contact angle further suggested an improvement in the hydrophilicity of the modified membrane. The introduction of HNP at a higher water bath temperature helped increase the water flux up to ten times, moreover, the oil-water separation efficiency could still reach over 99.50%. Lastly, a cycle test of the modified membrane under the optimal conditions helped confirm that the membrane forming conditions at this time could provide a better environment for the formation of the hydrophilic layer, which was conducive to the recycling of the separation membrane. In summary, more fixed more hydrophilic particles could be obtained through the RTIPS method based on biomimetic mineralization to prevent the accumulation of titanium dioxide, thus helping improve permeability and anti-fouling of the membrane.


Assuntos
Biônica , Membranas Artificiais , Polímeros/química , Sulfonas
2.
Environ Res ; 196: 110964, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675799

RESUMO

In this study, to mitigate the permeability-selectivity trade-off effect, Pluronic F127 (F127) and HKUST-1 were employed to construct high-performance membranes based on the reverse thermally induced phase separation (RTIPS) method. F127, as a hydrophilic modifier, was applied to increase permeability and resist polyethersulfone (PES) membrane fouling, while the collapse of HKSUT-1 caused by its instability in pure water improved the permeability and selectivity of the membrane. Characterizations demonstrated the successful synthesis of HKUST-1, together with the successful introduction of HKSUT-1 and F127 in PES membranes. It was observed that the membrane prepared by the RTIPS process possessed a uniformly porous surface and sponge-like cross-section with excellent mechanical properties, higher permeability, and selectivity compared to the dense skin and finger-like cross-section of the membrane prepared by the nonsolvent induced phase separation (NIPS) method. Moreover, the permeation and bovine serum albumin (BSA) rejection rate of the optimal membrane reached 2378 L/m2 h and 89.3%, respectively, which were far higher than those of the pure membrane. Hydrophilic F127 and many microvoids formed by the collapse of HKUST-1, played an important role in excellent antifouling properties, high permeability, and selectivity by pure water flux (PWF), flux recovery rate (FRR), BSA flux, and COD removal rate tests. Overall, the membrane with F127 and HKSUT-1 prepared via the RTIPS method not only obtained excellent antifouling properties but also mitigated the permeability-selectivity trade-off.


Assuntos
Membranas Artificiais , Estruturas Metalorgânicas , Permeabilidade , Polietilenos , Polímeros , Polipropilenos , Sulfonas
3.
RSC Adv ; 9(46): 26807-26816, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35528559

RESUMO

A new method was presented to prepare hydrophilic PES/SPSF flat-sheet membrane by a reverse thermally induced phase separation (RTIPS) method to enhance permeability and hydrophilicity. SPSF was self-made and was blended to improve the hydrophilicity of PES flat-sheet membrane. The performance of PES/SPSF flat-sheet membrane, which varied with SPSF content and coagulation water bath temperature, was investigated by SEM, FTIR, AFM, pure water flux, BSA rejection rate, water contact angle and long-term testing. FTIR results proved the successful blending of SPSF with PES membrane, SEM images showed that dense skin surface and finger-like structure emerged in the membrane fabricated by NIPS method, while a porous top surface and sponge-like structure emerged in the membrane fabricated by RTIPS. The pure water flux and BSA rejection rate of the membrane for RTIPS were both higher than those for NIPS. AFM images revealed that surface roughness increased with the addition of SPSF. The water contact angle decreased with the increase of SPSF, which illustrated better hydrophilicity with the addition of SPSF. The flat-sheet PES membrane prepared with 2 wt% SPSF by RTIPS method exhibited decent properties, reaching maximum pure water flux (966 L m-2 h-1) and at the same time the BSA rejection rate was 79.2%. The long-term test proved that the anti-fouling performance of PES/SPSF membrane was better than that of PES membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...