Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(1): 1005-1014, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134343

RESUMO

The development of pressure sensors with high sensitivity and a low detection limit for subtle mechanical force monitoring and the understanding of the sensing mechanism behind subtle mechanical force monitoring are of great significance for intelligent technology. Here, we proposed a graphene-based two-stage enhancement pressure sensor (GTEPS), and we analyzed the difference between subtle mechanical force monitoring and conventional mechanical force monitoring. The GTEPS exhibited a high sensitivity of 62.2 kPa-1 and a low detection limit of 0.1 Pa. Leveraging its excellent performance, the GTEPS was successfully applied in various subtle mechanical force monitoring applications, including acoustic wave detection, voice-print recognition, and pulse wave monitoring. In acoustic wave detection, the GTEPS achieved a 100% recognition accuracy for six words. In voiceprint recognition, the sensor exhibited accurate identification of distinct voiceprints among individuals. Furthermore, in pulse wave monitoring, GTEPS demonstrated effective detection of pulse waves. By combination of the pulse wave signals with electrocardiogram (ECG) signals, it enabled the assessment of blood pressure. These results demonstrate the excellent performance of GTEPS and highlight its great potential for subtle mechanical force monitoring and its various applications. The current results indicate that GTEPS shows great potential for applications in subtle mechanical force monitoring.

2.
Materials (Basel) ; 16(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37297066

RESUMO

As the focus on physical health increases, the market demand for flexible wearable sensors increases. Textiles combined with sensitive materials and electronic circuits can form flexible, breathable high-performance sensors for physiological-signal monitoring. Carbon-based materials such as graphene, carbon nanotubes (CNTs), and carbon black (CB) have been widely utilized in the development of flexible wearable sensors due to their high electrical conductivity, low toxicity, low mass density, and easy functionalization. This review provides an overview of recent advancements in carbon-based flexible textile sensors, highlighting the development, properties, and applications of graphene, CNTs, and CB for flexible textile sensors. The physiological signals that can be monitored by carbon-based textile sensors include electrocardiogram (ECG), human body movement, pulse and respiration, body temperature, and tactile perception. We categorize and describe carbon-based textile sensors based on the physiological signals they monitor. Finally, we discuss the current challenges associated with carbon-based textile sensors and explore the future direction of textile sensors for monitoring physiological signals.

3.
Sensors (Basel) ; 23(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36991702

RESUMO

Sensors enable the detection of physiological indicators and pathological markers to assist in the diagnosis, treatment, and long-term monitoring of diseases, in addition to playing an essential role in the observation and evaluation of physiological activities. The development of modern medical activities cannot be separated from the precise detection, reliable acquisition, and intelligent analysis of human body information. Therefore, sensors have become the core of new-generation health technologies along with the Internet of Things (IoTs) and artificial intelligence (AI). Previous research on the sensing of human information has conferred many superior properties on sensors, of which biocompatibility is one of the most important. Recently, biocompatible biosensors have developed rapidly to provide the possibility for the long-term and in-situ monitoring of physiological information. In this review, we summarize the ideal features and engineering realization strategies of three different types of biocompatible biosensors, including wearable, ingestible, and implantable sensors from the level of sensor designing and application. Additionally, the detection targets of the biosensors are further divided into vital life parameters (e.g., body temperature, heart rate, blood pressure, and respiratory rate), biochemical indicators, as well as physical and physiological parameters based on the clinical needs. In this review, starting from the emerging concept of next-generation diagnostics and healthcare technologies, we discuss how biocompatible sensors revolutionize the state-of-art healthcare system unprecedentedly, as well as the challenges and opportunities faced in the future development of biocompatible health sensors.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Inteligência Artificial , Próteses e Implantes , Atenção à Saúde
4.
Materials (Basel) ; 16(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36984013

RESUMO

Continuous blood pressure (BP) monitoring is of great significance for the real-time monitoring and early prevention of cardiovascular diseases. Recently, wearable BP monitoring devices have made great progress in the development of daily BP monitoring because they adapt to long-term and high-comfort wear requirements. However, the research and development of wearable continuous BP monitoring devices still face great challenges such as obvious motion noise and slow dynamic response speeds. The pulse wave transit time method which is combined with photoplethysmography (PPG) waves and electrocardiogram (ECG) waves for continuous BP monitoring has received wide attention due to its advantages in terms of excellent dynamic response characteristics and high accuracy. Here, we review the recent state-of-art wearable continuous BP monitoring devices and related technology based on the pulse wave transit time; their measuring principles, design methods, preparation processes, and properties are analyzed in detail. In addition, the potential development directions and challenges of wearable continuous BP monitoring devices based on the pulse wave transit time method are discussed.

5.
Nanomicro Lett ; 14(1): 161, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35943631

RESUMO

With the aging of society and the increase in people's concern for personal health, long-term physiological signal monitoring in daily life is in demand. In recent years, electronic skin (e-skin) for daily health monitoring applications has achieved rapid development due to its advantages in high-quality physiological signals monitoring and suitability for system integrations. Among them, the breathable e-skin has developed rapidly in recent years because it adapts to the long-term and high-comfort wear requirements of monitoring physiological signals in daily life. In this review, the recent achievements of breathable e-skins for daily physiological monitoring are systematically introduced and discussed. By dividing them into breathable e-skin electrodes, breathable e-skin sensors, and breathable e-skin systems, we sort out their design ideas, manufacturing processes, performances, and applications and show their advantages in long-term physiological signal monitoring in daily life. In addition, the development directions and challenges of the breathable e-skin are discussed and prospected.

6.
Nanoscale ; 14(11): 4234-4243, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35234767

RESUMO

Cracks play an important role in strain sensors. However, a systematic analysis of how cracks influence the strain sensors has not been proposed. In this work, an intelligent and highly sensitive strain sensor based on indium tin oxide (ITO)/polyurethane (PU) micromesh is realized. The micromesh has good skin compatibility, water vapor permeability, and stability. Due to the color of the ITO/PU micromesh, it can be invisible on the skin. Based on the fragility of ITO, the density and resistance of cracks in the micromesh are greatly improved. Therefore, the ITO/PU micromesh strain sensor (IMSS) has an ultrahigh gauge factor (744.3). In addition, a finite element model based on four resistance layers is proposed to explain the performance of the IMSS and show the importance of high-density cracks. Compared with other strain sensors based on low-density cracks, the IMSS based on high-density cracks has larger sensitivity and better linearity. Physiological signals, such as respiration, pulse, and joint motion, can be monitored using the IMSS self-fixed on the skin. Finally, an invisible and artificial throat has been realized by combining the IMSS with a convolutional neural network algorithm. The artificial throat can translate the throat vibrations of the tester automatically with an accuracy of 86.5%. This work has great potential in health care and language function reconstruction.

7.
Small ; 18(7): e2104810, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34882950

RESUMO

As the aging population increases in many countries, electronic skin (e-skin) for health monitoring has been attracting much attention. However, to realize the industrialization of e-skin, two factors must be optimized. The first is to achieve high comfort, which can significantly improve the user experience. The second is to make the e-skin intelligent, so it can detect and analyze physiological signals at the same time. In this article, intelligent and multifunctional e-skin consisting of laser-scribed graphene and polyurethane (PU) nanomesh is realized with high comfort. The e-skin can be used as a strain sensor with large measurement range (>60%), good sensitivity (GF≈40), high linearity range (60%), and excellent stability (>1000 cycles). By analyzing the morphology of e-skin, a parallel networks model is proposed to express the mechanism of the strain sensor. In addition, laser scribing is also applied to etch the insulating PU, which greatly decreases the impedance in detecting electrophysiology signals. Finally, the e-skin is applied to monitor the electrocardiogram, electroencephalogram (EEG), and electrooculogram signals. A time- and frequency-domain concatenated convolution neural network is built to analyze the EEG signal detected using the e-skin on the forehead and classify the attention level of testers.


Assuntos
Grafite , Dispositivos Eletrônicos Vestíveis , Lasers , Monitorização Fisiológica , Poliuretanos
8.
ACS Nano ; 15(5): 8907-8918, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33881822

RESUMO

High-performance electromagnetic interference (EMI) shielding materials with ultralow density, excellent flexibility, and good mechanical properties are highly desirable for aerospace and wearable electronics. Herein, honeycomb porous graphene (HPG) fabricated by laser scribing technology is reported for EMI shielding and wearable applications. Due to the honeycomb structure, the HPG exhibits an EMI shielding effectiveness (SE) up to 45 dB at a thickness of 48.3 µm. The single-piece HPG exhibits an ultrahigh absolute shielding effectiveness (SSE/t) of 240 123 dB cm2/g with an ultralow density of 0.0388 g/cm3, which is significantly superior to the reported materials such as carbon-based, MXene, and metal materials. Furthermore, MXene and AgNWs are employed to cover the honeycomb holes of the HPG to enhance surface reflection; thus, the SSE/t of the HPG/AgNWs composite membrane can reach up to 292 754 dB cm2/g. More importantly, the HPG exhibits excellent mechanical stability and durability in cyclic stretching and bending, which can be used to monitor weak physiological signals such as pulse, respiration, and laryngeal movement of humans. Therefore, the lightweight and flexible HPG exhibits excellent EMI shielding performance and mechanical properties, along with its low cost and ease of mass production, which is promising for practical applications in EMI shielding and wearable electronics.


Assuntos
Grafite , Dispositivos Eletrônicos Vestíveis , Fenômenos Eletromagnéticos , Humanos
9.
Nanoscale ; 11(41): 18923-18945, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31532436

RESUMO

The human body is a "delicate machine" full of sensors such as the fingers, nose, and mouth. In addition, numerous physiological signals are being created every moment, which can reflect the condition of the body. The quality and the quantity of the physiological signals are important for diagnoses and the execution of therapies. Due to the incompact interface between the sensors and the skin, the signals obtained by commercial rigid sensors do not bond well with the body; this decreases the quality of the signal. To increase the quantity of the data, it is important to detect physiological signals in real time during daily life. In recent years, there has been an obvious trend of applying graphene devices with excellent performance (flexibility, biocompatibility, and electronic characters) in wearable systems. In this review, we will first provide an introduction about the different methods of synthesis of graphene, and then techniques for graphene patterning will be outlined. Moreover, wearable graphene sensors to detect mechanical, electrophysiological, fluid, and gas signals will be introduced. Finally, the challenges and prospects of wearable graphene devices will be discussed. Wearable graphene sensors can improve the quality and quantity of the physiological signals and have great potential for health-care and telemedicine in the future.


Assuntos
Grafite/química , Dispositivos Eletrônicos Vestíveis , Líquidos Corporais/química , Eletroencefalografia , Eletromiografia , Gases/análise , Grafite/síntese química , Humanos , Lasers , Movimento , Gases em Plasma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...