Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(13): e2208965, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36745845

RESUMO

The increasing resistance of copper (Cu) interconnects for decreasing dimensions is a major challenge in continued downscaling of integrated circuits beyond the 7 nm technology node as it leads to unacceptable signal delays and power consumption in computing. The resistivity of Cu increases due to electron scattering at surfaces and grain boundaries at the nanoscale. Topological semimetals, owing to their topologically protected surface states and suppressed electron backscattering, are promising candidates to potentially replace current Cu interconnects. Here, we report the unprecedented resistivity scaling of topological metal molybdenum phosphide (MoP) nanowires, and it is shown that the resistivity values are superior to those of nanoscale Cu interconnects <500 nm2 cross-section areas. The cohesive energy of MoP suggests better stability against electromigration, enabling a barrier-free design . MoP nanowires are more resistant to surface oxidation than the 20 nm thick Cu. The thermal conductivity of MoP is comparable to those of Ru and Co. Most importantly, it is demonstrated that the dimensional scaling of MoP, in terms of line resistance versus total cross-sectional area, is competitive to those of effective Cu with barrier/liner and barrier-less Ru, suggesting MoP is an attractive alternative for the scaling challenge of Cu interconnects.

2.
Front Cell Dev Biol ; 10: 876071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120557

RESUMO

Objective: To find potential diagnostic biomarkers for ovarian cancer (OC), a prospective analysis of the expression of five biomarkers in patients with intermediate-risk and their correlation with the occurrence of OC was conducted. Method: A prospective observational study was carried out, patients who underwent surgical treatment with benign or malignant ovarian tumors in our hospital from January 2020 to February 2021 were included in this study, and a total of 263 patients were enrolled. Based on the postoperative pathological results, enrolled patients were divided into ovarian cancer group and benign tumor group (n = 135). The ovarian cancer group was further divided into a mid-stage group (n = 46) and an advanced-stage group (n = 82). The basic information of the three groups of patients was collected, the preoperative imaging data of the patients were collected to assess the lymph node metastasis, the preoperative blood samples were collected to examine cancer antigen 125 (CA125), carbohydrate antigen 19-9 (CA19-9), Neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and the postoperative pathological data were sorted and summarized. Result: The average during of disease in the advanced ovarian cancer group was 0.55 ± 0.18 years higher than the benign tumor group (0.43 ± 0.14 years), p < 0.001. In the advanced ovarian cancer group, the ratio of patients with the tumor, node, metastasis (TNM) stage IV (64.63%), with tumor Grade stage II and III (93.90%), and without lymph node metastasis (64.63%) was respectively more than that in the mid-stage group (accordingly 0.00, 36.96, 23.91%) (p < 0.001); The ratio of patients with TNM grade III in the mid-stage group (73.91%) was more than that in the advanced group (35.37%) (p < 0.001). The levels of the five biomarkers: CA19-9, CA125, NLR, PLR, and BDNF were different among the three groups (p < 0.001). Conclusion: CA19-9, CA125, NLR, PLR, BDNF are five biomarkers related to the occurrence of ovarian cancer and are risk factors for it. These five biomarkers and their Combined-Value may be suitable to apply in the diagnosis and the identification of ovarian cancer in patients with intermediate-risk.

3.
Mitochondrial DNA B Resour ; 7(6): 911-912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692651

RESUMO

Pyrocoelia analis (Fabricius, 1801) (Coleoptera, Lampyridae, Pyrocoelia) is a beautiful ornamental insect widely distributed in East and Southeast Asia. The complete mitogenome of P. analis has been sequenced. The mitogenome, total length of 14,785 bp, includes 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, and a noncoding D-loop region. The overall base composition of Pyrocoelia analis mitogenome is 34.63% for A, 13.69% for C, 42.79% for T, and 8.89% for G, with a high A + T bias of 77.42%. These mitogenome data might be useful for further phylogeography analyses and other related studies in Hymenoptera.

5.
Small ; 17(28): e2101693, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117830

RESUMO

Thermal management in Li-ion batteries is critical for their safety, reliability, and performance. Understanding the thermal conductivity of the battery materials is crucial for controlling the temperature and temperature distribution in batteries. This work provides systemic quantitative measurements of the thermal conductivity of three important classes of solid electrolytes (SEs) over the temperature range 150 < T < 350 K. Studies include the oxides Li1.5 Al0.5 Ge1.5 (PO4 )3 and Li6.4 La3 Zr1.4 Ta0.6 O12 , sulfides Li2 S-P2 S5 , Li6 PS5 Cl, and Na3 PS4 , and halides Li3 InCl6 and Li3 YCl6 . Thermal conductivities of sulfide and halide SEs are in the range 0.45-0.70 W m-1  K-1 ; thermal conductivities of Li6.4 La3 Zr1.4 Ta0.6 O12 and Li1.5 Al0.5 Ge1.5 (PO4 )3 are 1.4 and 2.2 W m-1  K-1 , respectively. For most of the SEs studied in this work, the thermal conductivity increases with increasing temperature, that is, the thermal conductivity has a glass-like temperature dependence. The measured room-temperature thermal conductivities agree well with the calculated minimum thermal conductivities indicating that the phonon mean-free-paths in these SEs are close to an atomic spacing. The low, glass-like thermal conductivity of the SEs investigated is attributed to the combination of their complex crystal structures and the atomic-scale disorder induced by the materials processing methods that are typically needed to produce high ionic conductivities.

6.
ACS Appl Mater Interfaces ; 13(27): 31843-31851, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34191480

RESUMO

Thermal resistances from interfaces impede heat dissipation in micro/nanoscale electronics, especially for high-power electronics. Despite the growing importance of understanding interfacial thermal transport, advanced thermal characterization techniques that can visualize thermal conductance across buried interfaces, especially for nonmetal-nonmetal interfaces, are still under development. This work reports a dual-modulation-frequency time-domain thermoreflectance (TDTR) mapping technique (1.61 and 9.3 MHz) to visualize the thermal conduction across buried semiconductor interfaces for ß-Ga2O3-SiC samples. Both the ß-Ga2O3 thermal conductivity and the buried ß-Ga2O3-SiC thermal boundary conductance (TBC) are visualized for an area of 200 × 200 µm simultaneously. Areas with low TBC values (≤20 MW/m2·K) are identified on the TBC map, which correspond to weakly bonded interfaces caused by high-temperature annealing. Additionally, the steady-state temperature rise induced by the TDTR laser, usually ignored in TDTR analysis, is found to be able to probe TBC variations of the buried interfaces without the typical limit of thermal penetration depth. This technique can be applied to detect defects/voids in deeply buried heterogeneous interfaces nondestructively and also opens a door for the visualization of thermal conductance in nanoscale nonhomogeneous structures.

7.
Cell Cycle ; 20(12): 1195-1208, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34048314

RESUMO

ATP metabolism during mitosis needs to be coordinated with numerous energy-demanding activities, especially in cancer cells whose metabolic pathways are reprogramed to sustain rapid proliferation in a nutrient-deficient environment. Although strategies targeting the energy metabolic pathways have shown therapeutic efficacy in preclinical cancer models, how normal cells and cancer cells differentially respond to energy shortage is unclear. In this study, using time-lapse microscopy, we found that cancer cells displayed unique mitotic phenotypes in a dose-dependent manner upon decreasing ATP (i.e. energy) supply. When reduction in ATP concentration was moderate, chromosome movements in mitosis were barely affected, while the metaphase-anaphase transition was significantly prolonged due to reduced tension between the sister-kinetochores, which delayed the satisfaction of the spindle assembly checkpoint. Further reduction in ATP concentration led to a decreased level of Aurora-B at the centromere, resulting in increased chromosome mis-segregation after metaphase delay. In contrast to cancer cells, ATP restriction in non-transformed cells induced cell cycle arrest in interphase, rather than causing mitotic defects. In addition, data mining of cancer patient database showed a correlation between signatures of energy production and chromosomal instability possibly resulted from mitotic defects. Together, these results reveal that energy restriction induces differential responses in normal and cancer cells, with chromosome mis-segregation only observed in cancer cells. This points to targeting energy metabolism as a potentially cancer-selective therapeutic strategy.


Assuntos
Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Segregação de Cromossomos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metáfase/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias do Colo do Útero/metabolismo , Anáfase/efeitos dos fármacos , Aurora Quinase B/metabolismo , Feminino , Células HeLa , Humanos , Interfase/efeitos dos fármacos , Cinetocoros/metabolismo , Microscopia/métodos , NAD/farmacologia , Fuso Acromático/metabolismo , Imagem com Lapso de Tempo/métodos , Neoplasias do Colo do Útero/patologia
8.
Drug Dev Res ; 81(8): 1004-1018, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32657473

RESUMO

Faced with the current large-scale public health emergency, collecting, sorting, and analyzing biomedical information related to the "SARS-CoV-2" should be done as quickly as possible to gain a global perspective, which is a basic requirement for strengthening epidemic control capacity. However, for human researchers studying viruses and hosts, the vast amount of information available cannot be processed effectively and in a timely manner, particularly if our scientific understanding is also limited, which further lowers the information processing efficiency. We present TWIRLS (Topic-wise inference engine of massive biomedical literatures), a method that can deal with various scientific problems, such as liver cancer, acute myeloid leukemia, and so forth, which can automatically acquire, organize, and classify information. Additionally, this information can be combined with independent functional data sources to build an inference system via a machine-based approach, which can provide relevant knowledge to help human researchers quickly establish subject cognition and to make more effective decisions. Using TWIRLS, we automatically analyzed more than three million words in more than 14,000 literature articles in only 4 hr. We found that an important regulatory factor angiotensin-converting enzyme 2 (ACE2) may be involved in host pathological changes on binding to the coronavirus after infection. On triggering functional changes in ACE2/AT2R, the cytokine homeostasis regulation axis becomes imbalanced via the Renin-Angiotensin System and IP-10, leading to a cytokine storm. Through a preliminary analysis of blood indices of COVID-19 patients with a history of hypertension, we found that non-ARB (Angiotensin II receptor blockers) users had more symptoms of severe illness than ARB users. This suggests ARBs could potentially be used to treat acute lung injury caused by coronavirus infection.

9.
Future Oncol ; 15(14): 1565-1576, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30888194

RESUMO

Aim: Utilize breast cancer samples in the same patient to indicate breast cancer development. Patients & methods: We performed whole-exome analysis of spatially independent ductal carcinoma in situ (DCIS) and invasive ductal carcinoma samples from the same breast. Results: In VEGF pathway, we observed two genes disrupted in DCIS, while another four (including ACTN2) mutated in invasive ductal carcinoma. When looked up TCGA database, we identified seven breast cancer patients with ACTN2 somatic mutations and observed a dramatic decrease in the overall survival time in ACTN2 mutant patients (p = 0.0182). A further finding in the TCGA database shows that breast cancer patients with ≥2 mutated genes in VEGF pathways showed worse prognosis (p = 0.0013). Conclusion: TCGA database and special case could inform each other to reveal DCIS developmental rules.


Assuntos
Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Heterogeneidade Genética , Variação Genética , Genômica , Actinina/genética , Adulto , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Carcinoma Intraductal não Infiltrante/diagnóstico , Carcinoma Intraductal não Infiltrante/metabolismo , Variações do Número de Cópias de DNA , Feminino , Genômica/métodos , Humanos , Mamografia/métodos , Pessoa de Meia-Idade , Mutação , Invasividade Neoplásica , Medicina de Precisão , Prognóstico , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Sequenciamento do Exoma
10.
Materials (Basel) ; 12(2)2019 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-30642039

RESUMO

The aim of this study was to optimize the adsorption performance of activated carbon (AC), derived from the shell of Penaeus vannamei prawns, on heavy metal ions. Inexpensive, non-toxic, and renewable prawn shells were subjected to carbonization and, subsequently, KOH-activation to produce nanoporous K-Ac. Carbonized prawn shells (CPS) and nanoporous KOH-activated carbon (K-Ac) from prawn shells were prepared and characterized by FTIR, XRD, BET, SEM, and TEM. The results showed that as-produced K-Ac samples were a porous material with microporous and mesoporous structures and had a high specific surface area of 3160 m²/g, average pore size of about 10 nm, and large pore volume of 2.38 m³/g. Furthermore, batches of K-Ac samples were employed for testing the adsorption behavior of Cd2+ in solution. The effects of pH value, initial concentration, and adsorption time on Cd2+ were systematically investigated. Kinetics and isotherm model analysis of the adsorption of Cd2+ on K-Ac showed that experimental data were not only consistent with the Langmuir adsorption isotherm, but also well-described by the quasi-first-order model. Finally, the adsorption behaviors of as-prepared K-Ac were also tested in a ternary mixture of heavy metal ions Cu2+, Cr6+, and Cd2+, and the total adsorption amount of 560 mg/g was obtained.

11.
Int J Clin Exp Pathol ; 12(3): 740-749, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31933881

RESUMO

Lung adenocarcinoma (LUAD) is the most common histologic subtype of lung cancer. Previous research has shown heterogeneity in lung cancer, with the parallel existence of multiple subclones characterized by their own specific mutational landscape. The aim of our study was to gain insight into the evolutionary pattern of lung cancer by investigating the genomic heterogeneity between a nodule and its distant tumor. Luckily, we obtained nodule and tumor samples derived from surgery and a blood sample from a single patient. The samples are very unique, for tissues with the same genetic background from nodules to malignant tumors are rarely available and require precise micro-cutting. In this study, we performed whole-genome sequencing of these two samples, to identify novel candidate driver genes associated with LUAD. The nodule and tumor were found to have common significant ubiquitin-specific protease 40 (USP40) mutations, indicating an important driver role for the gene. Moreover, we also observed the two novel candidate driver genes ASCL5 and CAPNS1 in the LUAD sample. In summary, we pinpoint the predominant mutations in LUAD by WES, highlighting the substantial genetic alterations contributing to LUAD tumorigenesis. This may provide a better understanding of the clonal evolution during tumor development.

12.
Asian-Australas J Anim Sci ; 31(9): 1393-1400, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29642685

RESUMO

OBJECTIVE: This study was carried out to assess the haplotype diversity and population dynamics in cattle populations of Ethiopia. METHODS: We sequenced the complete mitochondrial cytochrome b gene of 76 animals from five indigenous and one Holstein Friesian×Barka cross bred cattle populations. RESULTS: In the sequence analysis, 18 haplotypes were generated from 18 segregating sites and the average haplotype and nucleotide diversities were 0.7540±0.043 and 0.0010±0.000, respectively. The population differentiation analysis shows a weak population structure (4.55%) among the populations studied. Majority of the variation (95.45%) is observed by within populations. The overall average pair-wise distance (FST) was 0.049539 with the highest (FST = 0.1245) and the lowest (FST = 0.011) FST distances observed between Boran and Abigar, and Sheko and Abigar from the indigenous cattle, respectively. The phylogenetic network analysis revealed that all the haplotypes detected clustered together with the Bos taurus cattle and converged to a haplogroup. No haplotype in Ethiopian cattle was observed clustered with the reference Bos indicus group. The mismatch distribution analysis indicates a single population expansion event among the cattle populations. CONCLUSION: Overall, high haplotype variability was observed among Ethiopian cattle populations and they share a common ancestor with Bos taurus.

13.
PLoS One ; 11(10): e0156124, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695037

RESUMO

BACKGROUND: The fleece of cashmere goats contains two distinct populations of fibers, a short and fine non-medullated insulating cashmere fiber and a long and coarse medullated guard hair. The former is produced by secondary follicles (SFs) and the later by primary follicles (PFs). Evidence suggests that the induction of PFs and SFs may require different signaling pathways. The regulation of BMP2/4 signaling by noggin and Edar signaling via Downless genes are essential for the induction of SFs and PFs, respectively. However, these differently expressed genes of the signaling pathway cannot directly distinguish between the PFs and SFs. RESULTS: In this study, we selected RNA samples from 11 PFs and 7 SFs that included 145,525 exons. The pathway analysis of 4512 differentially expressed exons revealed that the most statistically significant metabolic pathway was related to the ubiquitin-mediated proteolysis pathway (UMPP) (P<3.32x 10-7). In addition, the 51 exons of the UMPP that were differentially expressed between the different types of hair follicle (HFs) were compared by cluster analysis. This resulted in the PFs and SFs being divided into two classes. The expression level of two selected exons was analyzed by qRT-PCR, and the results indicated that the expression patterns were consistent with the deep sequencing results obtained by RNA-Seq. CONCLUSIONS: Based on the comparative transcriptome analysis of 18 HFs from cashmere goats, a large number of differentially expressed exons were identified using a high-throughput sequencing approach. This study suggests that UMPP activation is a prominent signaling pathway for distinguishing the PFs and SFs of cashmere goats. It is also a meaningful contribution to the theoretical basis of the biological study of the HFs of cashmere goats and other mammals.


Assuntos
Perfilação da Expressão Gênica/veterinária , Cabras/crescimento & desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Ubiquitina/fisiologia , Animais , Éxons/genética , Cabelo/crescimento & desenvolvimento , Redes e Vias Metabólicas/fisiologia , Reação em Cadeia da Polimerase/veterinária , Proteólise , Transcriptoma/fisiologia
14.
BMC Genomics ; 17 Suppl 7: 512, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27557137

RESUMO

BACKGROUND: The objective of this research was to investigate the variation of gene expression in the blood transcriptome profile of Chinese Holstein cows associated to the milk yield traits. RESULTS: We used RNA-seq to generate the bovine transcriptome from the blood of 23 lactating Chinese Holstein cows with extremely high and low milk yield. A total of 100 differentially expressed genes (DEGs) (p < 0.05, FDR < 0.05) were revealed between the high and low groups. Gene ontology (GO) analysis demonstrated that the 100 DEGs were enriched in specific biological processes with regard to defense response, immune response, inflammatory response, icosanoid metabolic process, and fatty acid metabolic process (p < 0.05). The KEGG pathway analysis with 100 DEGs revealed that the most statistically-significant metabolic pathway was related with Toll-like receptor signaling pathway (p < 0.05). The expression level of four selected DEGs was analyzed by qRT-PCR, and the results indicated that the expression patterns were consistent with the deep sequencing results by RNA-Seq. Furthermore, alternative splicing analysis of 100 DEGs demonstrated that there were different splicing pattern between high and low yielders. The alternative 3' splicing site was the major splicing pattern detected in high yielders. However, in low yielders the major type was exon skipping. CONCLUSION: This study provides a non-invasive method to identify the DEGs in cattle blood using RNA-seq for milk yield. The revealed 100 DEGs between Holstein cows with extremely high and low milk yield, and immunological pathway are likely involved in milk yield trait. Finally, this study allowed us to explore associations between immune traits and production traits related to milk production.


Assuntos
Processamento Alternativo/genética , Lactação/genética , Transcrição Gênica , Transcriptoma/genética , Animais , Bovinos , Éxons , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Metabolismo dos Lipídeos/genética , Leite , Polimorfismo de Nucleotídeo Único
15.
J Colloid Interface Sci ; 332(1): 16-21, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19150079

RESUMO

A novel class of cationic gemini surfactants were prepared and used as modifiers for sodium montmorillonite (MMT-Na). The modified montmorillonites were characterized by X-ray diffraction (XRD), thermal analysis (TG), Fourier transform infrared spectroscopy (FTIR), dispersibility measurement, and scanning electron microscopy (SEM). The results show that the surfactants have been intercalated into the montmorillonite layers successfully. XRD measurements indicate that the gemini surfactant is more effective at expanding the interlayer space of the MMT than the corresponding single chain surfactant. Moreover, the high efficiency can be obtained by lengthening the hydrophobic chains of gemini surfactants. Thermal analysis shows that there are four different molecular environments for gemini surfactants in the modified montmorillonite. The dispersibility measurement and SEM results indicate that the modified montmorillonite are more hydrophobic and prone to agglomerate in water than MMT-Na. These modified materials have the potential for removal of environment pollutants such as pesticides, phenol, etc. or being used as antimicrobial materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...