Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(31): 22036-22046, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39041064

RESUMO

Responsive spin-crossover (SCO) metal-organic cages (MOCs) are emerging dynamic platforms with potential for advanced applications in magnetic sensing and molecular switching. Among these, FeIII-based MOCs are particularly noteworthy for their air stability, yet they remain largely unexplored. Herein, we report the synthesis of two novel FeIII MOCs using a bis-bidentate ligand approach, which exhibit SCO activity above room temperature. These represent the first SCO-active FeIII cages and feature an atypical {FeN6}-type coordination sphere, uncommon for FeIII SCO compounds. Our study reveals that these MOCs are sensitive to acid/base variations, enabling reversible magnetic switching in solution. The presence of multiple active proton sites within these SCO-MOCs facilitates multisite, multilevel proton-induced spin-state modulation. This behavior is observed at room temperature through 1H NMR spectroscopy, capturing the subtle proton-induced spin-state transitions triggered by pH changes. Further insights from extended X-ray absorption fine structure (EXAFS) and theoretical analyses indicate that these magnetic alterations primarily result from the protonation and deprotonation processes at the NH active sites on the ligands. These processes induce changes in the secondary coordination sphere, thereby modulating the magnetic properties of the cages. The capability of these FeIII MOCs to integrate magnetic responses with environmental stimuli underscores their potential as finely tunable magnetic sensors and highlights their versatility as molecular switches. This work paves the way for the development of SCO-active materials with tailored properties for applications in sensing and molecular switching.

2.
Nanomicro Lett ; 15(1): 110, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37121962

RESUMO

Direct electrochemical nitrate reduction reaction (NITRR) is a promising strategy to alleviate the unbalanced nitrogen cycle while achieving the electrosynthesis of ammonia. However, the restructuration of the high-activity Cu-based electrocatalysts in the NITRR process has hindered the identification of dynamical active sites and in-depth investigation of the catalytic mechanism. Herein, Cu species (single-atom, clusters, and nanoparticles) with tunable loading supported on N-doped TiO2/C are successfully manufactured with MOFs@CuPc precursors via the pre-anchor and post-pyrolysis strategy. Restructuration behavior among Cu species is co-dependent on the Cu loading and reaction potential, as evidenced by the advanced operando X-ray absorption spectroscopy, and there exists an incompletely reversible transformation of the restructured structure to the initial state. Notably, restructured CuN4&Cu4 deliver the high NH3 yield of 88.2 mmol h-1 gcata-1 and FE (~ 94.3%) at - 0.75 V, resulting from the optimal adsorption of NO3- as well as the rapid conversion of *NH2OH to *NH2 intermediates originated from the modulation of charge distribution and d-band center for Cu site. This work not only uncovers CuN4&Cu4 have the promising NITRR but also identifies the dynamic Cu species active sites that play a critical role in the efficient electrocatalytic reduction in nitrate to ammonia.

3.
Inorg Chem ; 61(10): 4428-4441, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35234043

RESUMO

The syntheses of valence tautomeric compounds with multistep transitions using new redox-active ligands are the long-term goal of the field of bistable materials. The redox-active tetraoxolene ligand, 2,7-di-tert-butylpyrene-4,5,9,10-tetraone (pyreneQ-Q), is now developed to synthesize a pair of dinuclear compounds {[CoL2]2(pyreneSq-Sq)}[Co(CO)4]2·xCH2Cl2·2C6H5CH3 (1, x = 2, L = 1,10-phenanthroline, phen; 2, x = 1.5, L = 2,2'-bipyridine, bpy). Variable-temperature magnetic susceptibilities and single-crystal X-ray diffraction measurements indicate a partial one-step valence tautomeric transition for 1 and a rare two-step valence tautomeric transition for 2, respectively. DFT calculation results are consistent with the experimental data, revealing the correlation between thermodynamic parameters and the one-step/two-step valence tautomeric behaviors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA