Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13135, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35908087

RESUMO

The imidazolium compound Ym155 was first reported to be a survivin inhibitor. Ym155 potently induces cell death of many types of cancer cells in preclinical studies. However, in phase II clinical trials Ym155 failed to demonstrate a significant benefit. Studies have suggested that the cytotoxic effects of Ym155 in cancer cells are not mediated by the inhibition of survivin. Understanding the mechanism by which Ym155 induces cell death would provide important insight how to improve its efficacy as a cancer therapeutic. We demonstrate a novel mechanism by which Ym155 induces cell death by localizing to the mitochondria causing mitochondrial dysfunction. Our studies suggest that Ym155 binds mitochondrial DNA leading to a decrease in oxidative phosphorylation, decrease in TCA cycle intermediates, and an increase in mitochondrial permeability. Furthermore, we show that mitochondrial stress induced by Ym155 and other mitochondrial inhibitors activates AMP-activated kinase leading to the downregulation to bone morphogenetic protein (BMP) signaling. We provide first evidence that Ym155 initiates cell death by disrupting mitochondrial function.


Assuntos
Antineoplásicos , Imidazóis/farmacologia , Neoplasias Pulmonares , Naftoquinonas/farmacologia , Proteínas Quinases Ativadas por AMP , Antineoplásicos/farmacologia , Apoptose , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Mitocôndrias/metabolismo , Survivina/metabolismo
2.
Cell Biosci ; 12(1): 76, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641992

RESUMO

BACKGROUND: Bone morphogenetic protein (BMP) is a phylogenetically conserved signaling pathway required for development that is aberrantly expressed in several age-related diseases including cancer, Alzheimer's disease, obesity, and cardiovascular disease. Aberrant BMP signaling in mice leads to obesity, suggesting it may alter normal metabolism. The role of BMP signaling regulating cancer metabolism is not known. METHODS: To examine BMP regulation of metabolism, C. elegans harboring BMP gain-of-function (gof) and loss-of-function (lof) mutations were examined for changes in activity of catabolic and anabolic metabolism utilizing Western blot analysis and fluorescent reporters. AMP activated kinase (AMPK) gof and lof mutants were used to examine AMPK regulation of BMP signaling. H1299 (LKB1 wild-type), A549 (LKB1 lof), and A549-LKB1 (LKB1 restored) lung cancer cell lines were used to study BMP regulation of catabolic and anabolic metabolism. Studies were done using recombinant BMP ligands to activate BMP signaling, and BMP receptor specific inhibitors and siRNA to inhibit signaling. RESULTS: BMP signaling in both C. elegans and cancer cells is responsive to nutrient conditions. In both C. elegans and lung cancer cell lines BMP suppressed AMPK, the master regulator of catabolism, while activating PI3K, a regulator of anabolism. In lung cancer cells, inhibition of BMP signaling by siRNA or small molecules increased AMPK activity, and this increase was mediated by activation of LKB1. BMP2 ligand suppressed AMPK activation during starvation. BMP2 ligand decreased expression of TCA cycle intermediates and non-essential amino acids in H1299 cells. Furthermore, we show that BMP activation of PI3K is mediated through BMP type II receptor. We also observed feedback signaling, as AMPK suppressed BMP signaling, whereas PI3K increased BMP signaling. CONCLUSION: These studies show that BMP signaling suppresses catabolic metabolism and stimulates anabolic metabolism. We identified feedback mechanisms where catabolic induced signaling mediated by AMPK negatively regulates BMP signaling, whereas anabolic signaling produces a positive feedback regulation of BMP signing through Akt. These mechanisms were conserved in both lung cancer cells and C. elegans. These studies suggest that aberrant BMP signaling causes dysregulation of metabolism that is a potential mechanism by which BMP promotes survival of cancer cells.

3.
Cell Commun Signal ; 20(1): 99, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35761398

RESUMO

BACKGROUND: Bone morphogenetic proteins (BMP) are evolutionarily conserved morphogens that are reactivated in lung carcinomas. In lung cancer cells, BMP signaling suppresses AMP activated kinase (AMPK) by inhibiting LKB1. AMPK is activated by mitochondrial stress that inhibits ATP production, which is enhanced 100-fold when phosphorylated by LKB1. Activated AMPK can promote survival of cancer cells but its "hyperactivation" induces cell death. The studies here reveal novel cell death mechanisms induced by BMP inhibitors, together with agents targeting the mitochondria, which involves the "hyperactivation" of AMPK. METHODS: This study examines the synergistic effects of two BMP inhibitors together with mitochondrial targeting agents phenformin and Ym155, on cell death of lung cancer cells expressing LKB1 (H1299), LKB1 null (A549), and A549 cells transfected with LKB1 (A549-LKB1). Cell death mechanisms evaluated were the activation of caspases and the nuclear localization of apoptosis inducing factor (AIF). A769662 was used to allosterically activate AMPK. Knockdown of BMPR2 and LKB1 using siRNA was used to examine their effects on nuclear localization of AMPK. Validation studies were performed on five passage zero primary NSCLC. RESULTS: Both BMP inhibitors synergistically suppressed growth when combined with Ym155 or phenformin in cells expressing LKB1. The combination of BMP inhibitors with mitochondrial targeting agents enhanced the activation of AMPK in lung cancer cells expressing LKB1. Allosteric activation of AMPK with A769662 induced cell death in both H1299 and A549 cells. Cell death induced by the combination of BMP inhibitors and mitochondrial-targeting agents did not activate caspases. The combination of drugs induced nuclear localization of AIF in cells expressing LKB1, which was attenuated by knockdown of LKB1. Knockdown of BMPR2 together with Ym155 increased nuclear localization of AIF. Combination therapy also enhanced cell death and AIF nuclear localization in primary NSCLC. CONCLUSIONS: These studies demonstrate that inhibition of BMP signaling together with mitochondrial targeting agents induce AIF caspase-independent cell death, which involves the "hyperactivation" of AMPK. AIF caspase-independent cell death is an evolutionarily conserved cell death pathway that is infrequently studied in cancer. These studies provide novel insight into mechanisms inducing AIF caspase-independent cell death in cancer cells using BMP inhibitors. Video Abstract.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Fator de Indução de Apoptose/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Caspases/metabolismo , Caspases/farmacologia , Morte Celular , Humanos , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Mitocôndrias/metabolismo , Fenformin/metabolismo , Fenformin/farmacologia , Proteínas Serina-Treonina Quinases
4.
Mol Cell Biochem ; 477(5): 1583-1595, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35192123

RESUMO

Glioblastomas (GBMs) are aggressive brain tumors that are resistant to chemotherapy and radiation. Bone morphogenetic protein (BMP) ligand BMP4 is being examined as a potential therapeutic for GBMs because it induces differentiation of cancer stem cells (CSCs) to an astrocyte phenotype. ID1 is reported to promote self-renewal and inhibit CSC differentiation. In most cancers, ID1 is transcriptionally upregulated by BMP4 promoting invasion and stemness. This conflicting data bring into question whether BMP signaling is growth suppressive or growth promoting in GBMs. We utilized BMP inhibitors DMH1, JL5, and Ym155 to examine the role of BMP signaling on the growth of GBMs. DMH1 targets BMP type 1 receptors whereas JL5 inhibits both the type 1 and type 2 BMP receptors. Ym155 does not bind the BMP receptors but rather inhibits BMP signaling by inducing the degradation of BMPR2. We show that JL5, DMH1, and Ym155 decreased the expression of ID1 in SD2 and U87 cells. JL5 and Ym155 also decreased the expression of BMPR2 and its downstream target inhibitor of apoptosis protein XIAP. JL5 treatment resulted in significant cell death and suppressed self-renewal to a greater extent than that induced by BMP4 ligand. The lysosome inhibitor chloroquine increases the localization of BMPR2 to the plasma membrane enhancing JL5-induced downregulation of ID1 and cell death in SD2 cells. We show that BMP signaling is growth promoting in GBMs. These studies suggest the need for development of BMP inhibitors and evaluation as potential therapeutic for GBMs.


Assuntos
Glioblastoma , Proteína Morfogenética Óssea 4 , Receptores de Proteínas Morfogenéticas Ósseas , Proteínas Morfogenéticas Ósseas , Glioblastoma/tratamento farmacológico , Humanos , Ligantes , Transdução de Sinais
5.
Cell Commun Signal ; 19(1): 97, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563224

RESUMO

BACKGROUND: Recent studies have shown that bone morphogenetic protein receptor 2 (BMPR2) regulates cell survival signaling events in cancer cells independent of the BMP type 1 receptor (BMPR1) or the Smad-1/5 transcription factor. Mutations in BMPR2 trafficking proteins leads to overactive BMP signaling, which leads to neurological diseases caused by BMPR2 stabilization of the microtubules. It is not known whether BMPR2 regulates the microtubules in cancer cells and what effect this has on cell survival. It is also not known whether alterations in BMPR2 trafficking effects activity and response to BMPR2 inhibitors. METHODS: We utilized BMPR2 siRNA and the BMP receptor inhibitors JL5 and Ym155, which decrease BMPR2 signaling and cause its mislocalization to the cytoplasm. Using the JL5 resistant MDA-MD-468 cell line and sensitive lung cancer cell lines, we examined the effects of BMPR2 inhibition on BMPR2 mislocalization to the cytoplasm, microtubule destabilization, lysosome activation and cell survival. RESULTS: We show that the inhibition of BMPR2 destabilizes the microtubules. Destabilization of the microtubules leads to the activation of the lysosomes. Activated lysosomes further decreases BMPR2 signaling by causing it to mislocalizated to the cytoplasm and/or lysosome for degradation. Inhibition of the lysosomes with chloroquine attenuates BMPR2 trafficking to the lysosome and cell death induced by BMPR2 inhibitors. Furthermore, in MDA-MD-468 cells that are resistant to JL5 induced cell death, BMPR2 was predominately located in the cytoplasm. BMPR2 failed to localize to the cytoplasm and/or lysosome following treatment with JL5 and did not destabilize the microtubules or activate the lysosomes. CONCLUSIONS: These studies reveal that the inhibition of BMPR2 destabilizes the microtubules promoting cell death of cancer cells that involves the activation of the lysosomes. Resistance to small molecules targeting BMPR2 may occur if the BMPR2 is localized predominantly to the cytoplasm and/or fails to localize to the lysosome for degradation. Video Abstract.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/antagonistas & inibidores , Morte Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/genética , Naftoquinonas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinolonas/farmacologia , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos
6.
BMC Cancer ; 17(1): 121, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28187762

RESUMO

BACKGROUND: Dispersal of glioblastoma (GBM) cells leads to recurrence and poor prognosis. Accordingly, molecular pathways involved in dispersal are potential therapeutic targets. The mitogen activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) pathway is commonly dysregulated in GBM, and targeting this pathway with MEK inhibitors has proven effective in controlling tumor growth. Since this pathway also regulates ECM remodeling and actin organization - processes crucial to cell adhesion, substrate attachment, and cell motility - the aim of this study was to determine whether inhibiting this pathway could also impede dispersal. METHODS: A variety of methods were used to quantify the effects of the MEK inhibitor, PD0325901, on potential regulators of dispersal. Cohesion, stiffness and viscosity were quantified using a method based on ellipsoid relaxation after removal of a deforming external force. Attachment strength, cell motility, spheroid dispersal velocity, and 3D growth rate were quantified using previously described methods. RESULTS: We show that PD0325901 significantly increases aggregate cohesion, stiffness, and viscosity but only when tumor cells have access to high concentrations of fibronectin. Treatment also results in reorganization of actin from cortical into stress fibers, in both 2D and 3D culture. Moreover, drug treatment localized pFAK at sites of cell-substratum adhesion. Collectively, these changes resulted in increased strength of substrate attachment and decreased motility, a decrease in aggregate dispersal velocity, and in a marked decrease in growth rate of both 2D and 3D cultures. CONCLUSIONS: Inhibition of the MAPK/ERK pathway by PD0325901 may be an effective therapy for reducing dispersal and growth of GBM cells.


Assuntos
Benzamidas/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Difenilamina/análogos & derivados , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Actinas/metabolismo , Adesão Celular/efeitos dos fármacos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Difenilamina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microscopia Confocal , Fosforilação/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
7.
PLoS One ; 10(8): e0135951, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284619

RESUMO

Despite resection and adjuvant therapy, the 5-year survival for patients with Glioblastoma multiforme (GBM) is less than 10%. This poor outcome is largely attributed to rapid tumor growth and early dispersal of cells, factors that contribute to a high recurrence rate and poor prognosis. An understanding of the cellular and molecular machinery that drive growth and dispersal is essential if we are to impact long-term survival. Our previous studies utilizing a series of immortalized GBM cell lines established a functional causation between activation of fibronectin matrix assembly (FNMA), increased tumor cohesion, and decreased dispersal. Activation of FNMA was accomplished by treatment with Dexamethasone (Dex), a drug routinely used to treat brain tumor related edema. Here, we utilize a broad range of qualitative and quantitative assays and the use of a human GBM tissue microarray and freshly-isolated primary human GBM cells grown both as conventional 2D cultures and as 3D spheroids to explore the role of Dex and FNMA in modulating various parameters that can significantly influence tumor cell dispersal. We show that the expression and processing of fibronectin in a human GBM tissue-microarray is variable, with 90% of tumors displaying some abnormality or lack in capacity to secrete fibronectin or assemble it into a matrix. We also show that low-passage primary GBM cells vary in their capacity for FNMA and that Dex treatment reactivates this process. Activation of FNMA effectively "glues" cells together and prevents cells from detaching from the primary mass. Dex treatment also significantly increases the strength of cell-ECM adhesion and decreases motility. The combination of increased cohesion and decreased motility discourages in vitro and ex vivo dispersal. By increasing cell-cell cohesion, Dex also decreases growth rate of 3D spheroids. These effects could all be reversed by an inhibitor of FNMA and by the glucocorticoid receptor antagonist, RU-486. Our results describe a new role for Dex as a suppressor of GBM dispersal and growth.


Assuntos
Neoplasias Encefálicas/patologia , Adesão Celular/fisiologia , Agregação Celular/fisiologia , Dexametasona/farmacologia , Fibronectinas/metabolismo , Glioblastoma/patologia , Anti-Inflamatórios/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Matriz Extracelular/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Integrina alfa5beta1/metabolismo , Invasividade Neoplásica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
8.
BMC Cancer ; 12: 94, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22433434

RESUMO

BACKGROUND: Invasion is an important early step in the metastatic cascade and is the primary cause of death of prostate cancer patients. In order to invade, cells must detach from the primary tumor. Cell-cell and cell-ECM interactions are important regulators of cohesion--a property previously demonstrated to mediate cell detachment and invasion. The studies reported here propose a novel role for α5ß1 integrin--the principle mediator of fibronectin matrix assembly (FNMA)--as an invasion suppressor of prostate cancer cells. METHODS: Using a combination of biophysical and cell biological methods, and well-characterized prostate cancer cell lines of varying invasiveness, we explore the relationship between cohesion, invasiveness, and FNMA. RESULTS: We show that cohesion is inversely proportional to invasive capacity. We also show that more invasive cells express lower levels of α5ß1 integrin and lack the capacity for FNMA. Cells were generated to over-express either wild-type α5 integrin or an integrin in which the cytoplasmic domain of α5 was replaced with that of α2. The α2 construct does not promote FNMA. We show that only wild-type α5 integrin promotes aggregate compaction, increases cohesion, and reduces invasion of the more aggressive cells, and that these effects can be blocked by the 70-kDa fibronectin fragment. CONCLUSIONS: We propose that restoring capacity for FNMA in deficient cells can increase tumor intercellular cohesion to a point that significantly reduces cell detachment and subsequent invasion. In prostate cancer, this could be of therapeutic benefit by blocking an early key step in the metastatic cascade.


Assuntos
Adesão Celular/fisiologia , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Neoplasias da Próstata/metabolismo , Análise de Variância , Agregação Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Integrina alfa5beta1/metabolismo , Masculino , Invasividade Neoplásica , Neoplasias da Próstata/patologia , Tensão Superficial
9.
PLoS One ; 6(9): e24810, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21980357

RESUMO

Glioblastoma (GBM), the most aggressive and most common form of primary brain tumor, has a median survival of 12-15 months. Surgical excision, radiation and chemotherapy are rarely curative since tumor cells broadly disperse within the brain. Preventing dispersal could be of therapeutic benefit. Previous studies have reported that increased cell-cell cohesion can markedly reduce invasion by discouraging cell detachment from the tumor mass. We have previously reported that α5ß1 integrin-fibronectin interaction is a powerful mediator of indirect cell-cell cohesion and that the process of fibronectin matrix assembly (FNMA) is crucial to establishing strong bonds between cells in 3D tumor-like spheroids. Here, we explore a potential role for FNMA in preventing dispersal of GBM cells from a tumor-like mass. Using a series of GBM-derived cell lines we developed an in vitro assay to measure the dispersal velocity of aggregates on a solid substrate. Despite their similar pathologic grade, aggregates from these lines spread at markedly different rates. Spreading velocity is inversely proportional to capacity for FNMA and restoring FNMA in GBM cells markedly reduces spreading velocity by keeping cells more connected. Blocking FNMA using the 70 KDa fibronectin fragment in FNMA-restored cells rescues spreading velocity, establishing a functional role for FNMA in mediating dispersal. Collectively, the data support a functional causation between restoration of FNMA and decreased dispersal velocity. This is a first demonstration that FNMA can play a suppressive role in GBM dispersal.


Assuntos
Neoplasias Encefálicas/metabolismo , Fibronectinas/metabolismo , Glioblastoma/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Dexametasona/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina alfa5beta1/metabolismo , Microscopia de Fluorescência/métodos , Modelos Estatísticos , Análise de Regressão , Esferoides Celulares/metabolismo
10.
Dev Dyn ; 236(8): 2039-49, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17584863

RESUMO

The organization of endocrine cells in pancreatic islets is established through a series of morphogenetic events involving cell sorting, migration, and re-aggregation processes for which intercellular adhesion is thought to play a central role. In animals, these morphogenetic events result in an islet topology in which insulin-secreting cells form the core, while glucagon, somatostatin, and pancreatic polypeptide-secreting cells segregate to the periphery. Isolated pancreatic islet cells self-assemble in vitro into pseudoislets with the same cell type organization as native islets. It is widely held that differential adhesion between cells of the pancreatic islets generates this specific topology. However, this differential adhesion has never been rigorously quantified. In this manuscript, we use tissue surface tensiometry to measure the cohesivity of spherical aggregates from three immortalized mouse pancreatic islet cell lines. We show that, as predicted by the differential adhesion hypothesis, aggregates of the internally segregating INS-1 and MIN6 beta-cell lines are substantially more cohesive than those of the externally segregating alpha-TC line. Furthermore, we show that forced overexpression of P-cadherin by alpha-TC cells significantly perturbs the sorting process. Collectively, the data indicate that differential adhesion can drive the in vitro organization of immortalized rodent pancreatic islet cells.


Assuntos
Ilhotas Pancreáticas/citologia , Morfogênese , Animais , Caderinas/genética , Caderinas/farmacologia , Adesão Celular , Linhagem Celular , Técnicas de Cocultura , Camundongos , Modelos Biológicos , Tensão Superficial
11.
Nutr Cancer ; 48(1): 44-53, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15203377

RESUMO

Oral administration of tea (Camellia sinensis) has been shown to inhibit the formation and growth of several tumor types in animal models. The present study investigated the effects of treatment with different concentrations of green tea on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis in female A/J mice. Two days after a single dose of NNK (100 mg/kg body weight, i.p.), the mice were given 0.1, 0.2, 0.4, and 0.6% green tea solution (1, 2, 4, and 6 g of tea solids, respectively, dissolved in 1 l of water), 0.02% caffeine, or water as the sole source of drinking fluid until the termination of the experiment. Only the treatment with 0.6% tea preparation significantly reduced lung tumor multiplicity (mean +/- SE, 6.07 +/- 0.77 vs. 8.60 +/- 0.50 tumors per mouse, P = 0.018). Treatment with 0.6% tea also inhibited angiogenesis, as indicated by the lower microvessel density (number of blood vessels/mm2) based on immunostaining for the von Willebrand factor antigen (81.9 +/- 9.5 vs. 129.4 +/- 8.2, P = 0.0018) and anti-CD31 antibody staining (465.3 +/- 61.4 vs. 657.1 +/- 43.6, P = 0.0012). Significantly lower vascular endothelial growth factor immunostaining scores were also observed in the 0.6% tea-treated group (0.98 +/- 0.17 vs. 1.43 +/- 0.07, P = 0.006). The apoptosis index was significantly higher in lung adenomas from 0.6% tea-treated mice based on morphological analysis of cell apoptosis (2.51 +/- 0.18% vs. 1.57 +/- 0.11%, P = 0.00005), and the result was further confirmed using the TUNEL method. Inhibition of angiogenesis and the induction of apoptosis by green tea may be closely related to the inhibition of pulmonary carcinogenesis.


Assuntos
Adenoma/prevenção & controle , Apoptose/efeitos dos fármacos , Neoplasias Pulmonares/prevenção & controle , Neovascularização Patológica/prevenção & controle , Chá/química , Adenoma/irrigação sanguínea , Adenoma/induzido quimicamente , Adenoma/patologia , Administração Oral , Animais , Carcinógenos/toxicidade , Relação Dose-Resposta a Droga , Feminino , Imuno-Histoquímica , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos A , Nitrosaminas/toxicidade , Distribuição Aleatória , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator de von Willebrand/análise , Fator de von Willebrand/imunologia
12.
Development ; 129(5): 1085-94, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11874905

RESUMO

Four classes of floral homeotic MADS domain proteins specify the identities of the four organ types in an Arabidopsis flower. While the activities of the MADS domain proteins are essentially confined to the flower or to the inflorescence, several genes, such as APETALA2, HUA1 and HUA2, also act outside the flower in addition to their organ identity functions inside the flower. We identified a new gene, HUA ENHANCER 1 (HEN1) from a sensitized genetic screen in the hua1-1 hua2-1 background that is compromised in floral homeotic C function. We showed that HEN1, like the C function gene AGAMOUS, acts to specify reproductive organ identities and to repress A function. HEN1 also shares AG's non-homeotic function in controlling floral determinacy. HEN1 may achieve these functions by regulating the expression of AG. hen1 single mutants exhibit pleiotropic phenotypes such as reduced organ size, altered rosette leaf shape and increased number of coflorescences, during most stages of development. Therefore, HEN1, like the A function gene AP2, plays multiple roles in plant development as well as acting in organ identity specification in the flower. HEN1 codes for a novel protein and is expressed throughout the plant.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Ligação a DNA , Genes de Plantas , Meristema/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Clonagem Molecular , Genes , Proteínas de Homeodomínio/genética , Proteínas de Domínio MADS , Meristema/genética , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Fenótipo , Proteínas de Plantas/genética , Brotos de Planta/genética , RNA Mensageiro/isolamento & purificação , RNA de Plantas/isolamento & purificação , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...