Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 10(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38786219

RESUMO

Pisha sandstone (PS) is a special interbedded rock in the middle reaches of the Yellow River that experiences severe weathering and is loose and broken. Due to severe multiple erosion events, the Pisha sandstone region is called "the most severe water loss and soil erosion in the world" and "the ecological cancer of the earth". As a special pozzolanic mineral, PS has the potential to be used as precursors for the synthesis of green and low-carbon geopolymer gel materials and applied in ecological restoration. This paper aims to undertake a phase review of the precursors for geopolymer gel materials. The genesis and distribution, physical and chemical characterization, erosion characteristics, and advances in the ecological restoration of PS are all summarized. Furthermore, current advances in the use of PS for the synthesis of geopolymer gel materials in terms of mechanical properties and durability are discussed. The production of Pisha sandstone geopolymer gels through the binder jetting technique and 3D printing techniques is prospected. Meanwhile, the prospects for the resource application of PS in mine rehabilitation and sustainable ecology are discussed. In the future, multifactor-driven comprehensive measures should be further investigated in order to achieve ecological restoration of the Pisha sandstone region and promote high-quality development of the Yellow River Basin.

2.
Gels ; 8(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36547315

RESUMO

The treatment of silted sediment in the river is a global problem. The accumulation of waste sediment will lead to an adverse impact on the environment. In this paper, the silted sediment was reused to produce geopolymer composite materials via alkali-activated gelling modification. The effects of the modifiers of sodium silicate solution, quicklime, and Na2SO4 admixture, and the dosage of the slag, fly ash, and silica fume admixture, and curing conditions and age, on the compressive strength and microstructure of the geopolymer-modified sediment materials were studied. The crystalline phase and hydration products of the modified sediment geopolymer composites were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), respectively. A compressive strength test was conducted to evaluate the mechanical properties of the composites. The results showed that the type and dosage of modifier, amount of mineral admixture additive, cure conditions, and cure age had significant effects on the mechanical properties of the composites. The effect of the addition of mineral admixture on the compressive strength of the modified sediment specimens was more noticeable than that of the modifier. The compressive strength of the geopolymer-modified specimens was greatly increased by the addition of mineral dopants. When 10 wt.% silica fume is added, the compressive strength reaches a maximum value of 33.25 MPa at 60 days. The SEM-EDS results show that the C-S-H gels and C-A-S-H gels were the main hydration products. The results indicate that river siltation sediment is an excellent raw material for geopolymer-modified materials. It is feasible to produce reliable and sustainable hydraulic engineering materials by using river sediment geopolymer-modified materials.

3.
Gels ; 8(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35621598

RESUMO

The Yellow River has the highest sediment concentration in the world, and the Yellow River coarse sediment mainly comes from a particular kind of argillaceous sandstone, Pisha sandstone. This paper reports an investigation of the possibility of development of low-cost engineering materials using Pisha sandstone via ion exchange modification. The effect of modifiers with different concentration on the inhibition of volume expansion and the strength enhancement of modified Pisha sandstone were studied via ion exchange solidification. The effects of the concentration of ten types of modifier solutions and curing age were considered. The hydration of the mineral components, particle surface potential and reaction products were studied, respectively, by XRD, zeta potential, TG/DTG and SEM. Expansion volume and shear strength tests were conducted to assess the volume stability and mechanical property of modified Pisha sandstone. It showed that the expansion of Pisha sandstone was controlled and that the volume stability and shear strength were improved via ion exchange modification. The results of XRD, TG/DTG and SEM showed that the spacing of the crystal layers of the Pisha sandstone clay mineral and the mass lost had decreased significantly. When the concentration of the modifier was 0.05 mol/L, the volume reduced by 54.55% maximum and the shear strength reached the peak of 138 kPa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...