Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Gen Appl Microbiol ; 67(3): 106-113, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790089

RESUMO

A pot experiment was conducted with kiwifruit planting soil to evaluate the impacts of potassium solubilizing bacteria (KSB) and K-feldspar on the soil nutrient levels, enzyme activities, and microecological environment. The effects were investigated of three inoculation treatments (T1: K-feldspar, T2: KSB, and T3: KSB with K-feldspar) and a non-inoculation treatment (CK) on the enzyme activities and the metabolic activities of the bacterial communities in kiwifruit rhizosphere soil. The results showed that the total nitrogen, available phosphorus, available potassium, and organic matter contents in T3 were 18.19%, 45.22%, 15.06%, and 4.17% higher, respectively, than those in CK at the end of the experiment (90 days). Compared with CK, T3 significantly increased the invertase, urease, acid phosphatase, and polyphenol oxidase activities. T3 had a higher kiwifruit root activity, but there were no significant differences among the four treatments (P > 0.05). T3 significantly altered the bacterial community diversity, increased the utilization of phenolic compounds and polymers, and decreased the utilization of amino acids. Redundancy analysis indicated that soil nutrients (total nitrogen, available phosphorus, and available potassium) and enzyme activities (urease and acid phosphatase) had more important effects on the metabolic activities of the bacterial communities. Co-inoculation enhanced the soil nutrients, enzyme activities, and bacterial community diversity. KSB co-inoculated with K-feldspar has the potential to improve the soil fertility, microbial metabolic activity and plant growth.


Assuntos
Actinidia/crescimento & desenvolvimento , Silicatos de Alumínio/farmacologia , Bactérias/metabolismo , Microbiota/fisiologia , Compostos de Potássio/farmacologia , Potássio/metabolismo , Microbiologia do Solo , Enzimas/análise , Fertilizantes/análise , Microbiota/efeitos dos fármacos , Nutrientes/análise , Raízes de Plantas/crescimento & desenvolvimento , Rizosfera , Solo/química
2.
J Hazard Mater ; 410: 124869, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33422735

RESUMO

Biotechnologies integrated with chemical techniques are promising in treating the soils contaminated by petroleum hydrocarbons. Experiments by applying the degrading consortium and the modified Fenton (MF) with the chelator sodium citrate simultaneously were carried out to investigate the effects of the MF reagents on the degradation of total petroleum hydrocarbons (TPHs), changes in enzyme activities and the succession of microbial communities at the 0, 20, 100 and 500 mmol/kg hydrogen peroxide concentration levels. The ratio between hydrogen peroxide, ferrous sulfate and sodium citrate in the MF reagents was 100:1:1. The results indicated that the degradation of TPHs conformed to first-order kinetics and MF treatments increased the total removal rates of TPHs (4.73-24.26%) and activated dehydrogenase and polyphenol oxidase activities. A shift in microbial communities from Proteobacteria to Bacteroidetes was observed during the enhanced bioremediation, and the predominant genus shifted from Pseudomonas with an average relative abundance (ARAs) of 76.61% at the beginning to Sphingobacterium with ARAs of 52.06% at the later stage. The MF reagents at the proper level could simplify the relationship among the community populations, alleviate their competition and strengthen their associations, which would optimize the removal efficiency.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
3.
Sci Total Environ ; 676: 396-406, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31048170

RESUMO

Grassland afforestation strongly influences the structure and function of soil microorganisms. Yet the mechanisms of how afforestation could simultaneously alter both the soil fungal and bacterial communities and its implications for ecosystem management are poorly understood, especially in nitrogen-limited ecosystems. Using high-throughput sequencing of 16S rRNA and ITS rRNA genes, the present study investigated the changes in soil properties and soil microorganisms after afforestation of natural grasslands with Chinese pine (Pinus tabuliformis) on the Loess Plateau in China. Results showed that soil bacterial diversity had no significant differences among the grassland (GL), forest-grassland transition zone (TZ), and forestland (FL), while soil fungal diversity in the GL was significantly higher than that in the FL and TZ (P < 0.05). The proportion of shared OTUs in the soil bacterial community was higher than that in the soil fungal community among the three land use types. The dominant bacterial phylum shifted from Proteobacteria to Actinobacteria, while the dominant fungal phylum shifted from Ascomycota to Basidiomycota after the GL conversion to the FL. The functional groups of ECM fungi increased significantly while biotrophic fungi decreased significantly after grassland afforestation. Both the soil bacterial and fungal communities in the TZ showed great similarity with those in the FL. In addition, among all examined soil properties, soil nitrogen (N) showed a more significant effect on the soil microbial communities. The reduction of soil N after grassland afforestation resulted in both the structure and function changes in soil microbial communities. Our results demonstrated simultaneously differential changes in the composition and diversity of both soil bacterial and fungal communities after afforestation from grasslands to planted forests.


Assuntos
Monitoramento Ambiental , Florestas , Pradaria , Microbiologia do Solo , China , Ecossistema , Solo/química
4.
Sci Rep ; 4: 4287, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24598728

RESUMO

To address the combined effects of cadmium (Cd) and elevated CO2 on soil microbial communities, DGGE (denaturing gradient gel electrophoresis) profiles, respiration, carbon (C) and nitrogen (N) concentrations, loessial soils were exposed to four levels of Cd, i.e., 0 (Cd0), 1.5 (Cd1.5), 3.0 (Cd3.0) and 6.0 (Cd6.0) mg Cd kg(-1) soil, and two levels of CO2, i.e., 360 (aCO2) and 480 (eCO2) ppm. Compared to Cd0, Cd1.5 increased fungal abundance but decreased bacterial abundance under both CO2 levels, whilst Cd3.0 and Cd6.0 decreased both fungal and bacterial abundance. Profiles of DGGE revealed alteration of soil microbial communities under eCO2. Soil respiration decreased with Cd concentrations and was greater under eCO2 than under aCO2. Soil total C and N were greater under higher Cd. These results suggest eCO2 could stimulate, while Cd pollution could restrain microbial reproduction and C decomposition with the restraint effect alleviated by eCO2.


Assuntos
Cádmio/química , Dióxido de Carbono/química , Poluição Ambiental , Microbiologia do Solo , Solo/química , Carbono/química , Microbiota , Nitrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA