Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 298, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268908

RESUMO

BACKGROUND: Rabbits are well-domesticated animals. As a crucial economic animal, rabbit has been successfully bred into wool-use, meat-use and fur-use breeds. Hair length is one of the most economically important traits affecting profitability in wool rabbits. In this study, to identify selection signatures with the long-hair trait, whole-genomic resequencing of long-haired rabbits (Angora rabbits) and short-haired rabbits (Rex and New Zealand rabbits) was performed. RESULTS: By genome-wide selective sweeping analysis based on population comparison, we identified a total of 5.85 Mb regions (containing 174 candidate genes) with strong selection signals. Six of these genes (Dusp1, Ihh, Fam134a, Map3k1, Spata16, and Fgf5) were enriched in the MAPK signalling and Hedgehog signalling pathways, both of which are closely associated with hair growth regulation. Among these genes, Fgf5 encodes the FGF5 protein, which is a well-established regulator of hair growth. There was a nonsynonymous nucleotide substitution (T19234C) in the Fgf5 gene. At this locus, the C allele was present in all of the tested Angora rabbits, while the T allele was dominant in New Zealand and Rex rabbits. We further confirmed that the C allele was conserved in Angora rabbits by screening an additional 135 rabbits. Moreover, the results of functional predictions and co-immunoprecipitation revealed that the T19234C mutation impaired the binding capacity of FGF5 to its receptor FGFR1. CONCLUSIONS: We discovered that the homozygous missense mutation T19234C within Fgf5 might contribute to the long-hair trait of Angora rabbits by reducing its receptor binding capacity. This finding will provide new insights into the genetic basis underlying the genetic improvement of Angora rabbits and benefit the improvement of rabbit breeding in the future.


Assuntos
Fator 5 de Crescimento de Fibroblastos , Mutação de Sentido Incorreto , Coelhos , Animais , Fator 5 de Crescimento de Fibroblastos/genética , Proteínas Hedgehog/genética , Cabelo , Alelos
2.
Front Pharmacol ; 14: 1105459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180704

RESUMO

Introduction: The new coronavirus has caused a pandemic that has infected hundreds of millions of people around the world since its outbreak. But the cardiovascular damage caused by the new coronavirus is unknown. We have analyzed the current global scenario and the general pattern of growth. After summarizing the known relationship between cardiovascular diseases and new coronary pneumonia, relevant articles are analyzed through bibliometrics and visualization. Methods: Following our pre-designed search strategy, we selected publications on COVID-19 and cardiovascular disease in the Web of Science database. In our relevant bibliometric visualization analysis, a total of 7,028 related articles in the WOS core database up to 20th October 2022 were summarized, and the most prolific authors, the most prolific countries, and the journals and institutions that published the most articles were summarized and quantitatively analyzed. Results: SARS-CoV-2 is more infectious than SARS-CoV-1 and has significant involvement in the cardiovascular system in addition to pulmonary manifestations, with a difference of 10.16% (20.26%/10.10%) in the incidence of cardiovascular diseases. The number of cases increases in winter and decreases slightly in summer with temperature changes, but the increase in cases tends to break out of seasonality across the region as mutant strains emerge. The co-occurrence analysis found that with the progress of the epidemic, the research keywords gradually shifted from ACE2 and inflammation to the treatment of myocarditis and complications, indicating that the research on the new crown epidemic has entered the stage of prevention and treatment of complications. Conclusion: When combined with the current global pandemic trend, how to improve prognosis and reduce human body damage could become a research focus. At the same time, timely detection, prevention, and discovery of new mutant strains have also become key tasks in the fight against the epidemic, and full preparations have been made to prevent the spread of the next wave of mutant strains, and still need to continue to pay attention to the differential performance of the variant "omicron."

3.
Cell Metab ; 35(5): 742-757.e10, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37040763

RESUMO

Nonalcoholic steatohepatitis (NASH) prevalence is rising with no pharmacotherapy approved. A major hurdle in NASH drug development is the poor translatability of preclinical studies to safe/effective clinical outcomes, and recent failures highlight a need to identify new targetable pathways. Dysregulated glycine metabolism has emerged as a causative factor and therapeutic target in NASH. Here, we report that the tripeptide DT-109 (Gly-Gly-Leu) dose-dependently attenuates steatohepatitis and fibrosis in mice. To enhance the probability of successful translation, we developed a nonhuman primate model that histologically and transcriptionally mimics human NASH. Applying a multiomics approach combining transcriptomics, proteomics, metabolomics, and metagenomics, we found that DT-109 reverses hepatic steatosis and prevents fibrosis progression in nonhuman primates, not only by stimulating fatty acid degradation and glutathione formation, as found in mice, but also by modulating microbial bile acid metabolism. Our studies describe a highly translatable NASH model and highlight the need for clinical evaluation of DT-109.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Fibrose , Metabolismo dos Lipídeos , Primatas
4.
Viruses ; 14(5)2022 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-35632744

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) induces secretion of high mobility group box 1 (HMGB1) to mediate inflammatory response that is involved in the pulmonary injury of infected pigs. Our previous study indicates that protein kinase C-delta (PKC-delta) is essential for HMGB1 secretion in PRRSV-infected cells. However, the underlying mechanism in HMGB1 secretion induced by PRRSV infection is still unclear. Here, we discovered that the phosphorylation level of HMGB1 in threonine residues increased in PRRSV-infected cells. A site-directed mutagenesis study showed that HMGB1 phosphorylation at threonine-51 was associated with HMGB1 secretion induced by PRRSV infection. Co-immunoprecipitation (co-IP) of HMGB1 failed to precipitate PKC-delta, but interestingly, mass spectrometry analysis of the HMGB1 co-IP product showed that PRRSV infection enhanced HMGB1 binding to ribosomal protein S3 (RPS3), which has various extra-ribosomal functions. The silencing of RPS3 by siRNA blocked HMGB1 secretion induced by PRRSV infection. Moreover, the phosphorylation of HMGB1 at threonine-51 was correlated with the interaction between HMGB1 and RPS3. In vivo, PRRSV infection also increased RPS3 levels and nuclear accumulation in pulmonary alveolar macrophages. These results demonstrate that PRRSV may induce HMGB1 phosphorylation at threonine-51 and increase its interaction with RPS3 to enhance HMGB1 secretion. This finding provides insights into the pathogenesis of PRRSV infection.


Assuntos
Proteína HMGB1 , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Proteína HMGB1/metabolismo , Fosforilação , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos , Treonina/metabolismo
5.
Am J Pathol ; 192(7): 1016-1027, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35461855

RESUMO

Mediator 1 (MED1), a key subunit of the mediator complex, interacts with various nuclear receptors and functions in lipid metabolism and energy homeostasis. Dilated cardiomyopathy-related ventricular dilatation and heart failure have been reported in mice with cardiomyocyte-specific Med1 deficiency. However, the contribution of macrophage-specific MED1 in cardiac remodeling remains unclear. In this study, macrophage-specific Med1 knockout (Med1ΔMac) mice were generated and exposed to isoproterenol (ISO) to induce cardiac fibrosis; these mice showed aggravated cardiac fibrosis compared with Med1fl/fl mice. The levels of expression of marker genes for myofibroblast transdifferentiation [α-smooth muscle actin (SMA)] and of profibrotic genes, including Col1a1, Col3a1, Postn, Mmp2, Timp1, and Fn1, were significantly increased in the cardiac tissues of Med1ΔMac mice with ISO-induced myocardial fibrosis. In particular, the transforming growth factor (TGF)-ß-Smad2/3 signaling pathway was activated. In bone marrow-derived and peritoneal macrophages, Med1 deficiency was also associated with elevated levels of expression of proinflammatory genes, including Il6, Tnfa, and Il1b. These findings indicate that macrophage-specific MED1 deficiency may aggravate ISO-induced cardiac fibrosis via the regulation of the TGF-ß-SMAD2/3 pathway, and the underlying mechanism may involve MED1 deficiency triggering the activation of inflammatory cytokines in macrophages, which in turn may stimulate phenotypic switch of cardiac fibroblasts and accelerate cardiac fibrosis. Thus, MED1 is a potential therapeutic target for cardiac fibrosis.


Assuntos
Isoproterenol , Macrófagos , Subunidade 1 do Complexo Mediador , Miócitos Cardíacos , Animais , Fibrose , Isoproterenol/toxicidade , Macrófagos/metabolismo , Subunidade 1 do Complexo Mediador/deficiência , Subunidade 1 do Complexo Mediador/genética , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Miofibroblastos/metabolismo
6.
Proteome Sci ; 20(1): 1, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980145

RESUMO

BACKGROUND: Cardiovascular diseases remain the leading cause of morbidity and mortality worldwide, most of which are caused by atherosclerosis. Discerning processes that participate in macrophage-to-foam cell formation are critical for understanding the basic mechanisms underlying atherosclerosis. To explore the molecular mechanisms of foam cell formation, differentially expressed proteins were identified. METHODS: Human peripheral blood mononuclear cells were stimulated with macrophage colony-stimulating factor, and obtained macrophages were transformed into foam cells by oxidized low-density lipoprotein. Tandem mass tag (TMT) labeling combined with mass spectrometry was performed to find associations between foam cell transformation and proteome profiles. RESULTS: Totally, 5146 quantifiable proteins were identified, among which 1515 and 182 differentially expressed proteins (DEPs) were found in macrophage/monocyte and foam cell/macrophage, respectively. Subcellular localization analysis revealed that downregulated DEPs of macrophages/monocytes were mostly located in the nucleus, whereas upregulated DEPs of foam cells/macrophages were mostly extracellular or located in the plasma membrane. Functional analysis of DEPs demonstrated that cholesterol metabolism-related proteins were upregulated in foam cells, whereas immune response-related proteins were downregulated in foam cells. The protein interaction network showed that the DEPs with the highest interaction scores between macrophages and foam cells were mainly concentrated in lysosomes and the endoplasmic reticulum. CONCLUSIONS: Proteomics analysis suggested that cholesterol metabolism was upregulated, while the immune response was suppressed in foam cells. KEGG enrichment analysis and protein-protein interaction analysis indicated that DEPs located in the endoplasmic reticulum and lysosomes might be key drivers of foam cell formation. These data provide a basis for identifying the potential proteins associated with the molecular mechanism underlying macrophage transformation to foam cells.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34948764

RESUMO

Atherosclerosis is a pathological vascular state caused by the interaction of environmental and hereditary factors. Epigenetic modifications may be the bridge connecting environmental factors and genetic factors. A search for publications on the Web of Science database in the field of atherosclerosis related to epigenetics was conducted from the earliest mention to 31 December 2020. Data on total and annual publications, citations, impact factors, Hirsch (H)-index, citation times, most prolific authors, and frequently published journals were collected for quantitative and qualitative comparison. A total of 1848 publications related to epigenetics and atherosclerosis were found. The major contributing countries were the China (522, 28.23%), United States (485, 26.23%), and Germany (119, 6.44%). The greatest number of retrieved publications were published in the journal, "Arteriosclerosis, Thrombosis, and Vascular Biology" (62, 3.66%). The publication "Oxidative Stress and Diabetic Complications" was cited 2370 times. The most frequent keywords were "DNA methylation" and "LncRNA". Publications on epigenetic research in the atherosclerosis field have increased significantly every year, indicating that the study of epigenetic modifications plays an increasingly important role in understanding the pathology of atherosclerosis.


Assuntos
Aterosclerose , Bibliometria , Aterosclerose/epidemiologia , Aterosclerose/genética , Epigênese Genética , Epigenômica , Alemanha , Humanos , Publicações , Estados Unidos
8.
Oxid Med Cell Longev ; 2021: 3010577, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34853629

RESUMO

Mediator complex subunit 1 (MED1) is a component of the mediator complex and functions as a coactivator involved in the regulated transcription of nearly all RNA polymerase II-dependent genes. Previously, we showed that MED1 in macrophages has a protective effect on atherosclerosis; however, the effect of MED1 on intimal hyperplasia and mechanisms regulating proinflammatory cytokine production after macrophage MED1 deletion are still unknown. In this study, we report that MED1 macrophage-specific knockout (MED1 ΔMac) mice showed aggravated neointimal hyperplasia, vascular smooth muscle cells (VSMCs), and macrophage accumulation in injured arteries. Moreover, MED1 ΔMac mice showed increased proinflammatory cytokine production after an injury to the artery. After lipopolysaccharide (LPS) treatment, MED1 ΔMac macrophages showed increased generation of reactive oxygen species (ROS) and reduced expression of peroxisome proliferative activated receptor gamma coactivator-1α (PGC1α) and antioxidant enzymes, including catalase and glutathione reductase. The overexpression of PGC1α attenuated the effects of MED1 deficiency in macrophages. In vitro, conditioned media from MED1 ΔMac macrophages induced more proliferation and migration of VSMCs. To explore the potential mechanisms by which MED1 affects inflammation, macrophages were treated with BAY11-7082 before LPS treatment, and the results showed that MED1 ΔMac macrophages exhibited increased expression of phosphorylated-p65 and phosphorylated signal transducer and activator of transcription 1 (p-STAT1) compared with the control macrophages, suggesting the enhanced activation of NF-κB and STAT1. In summary, these data showed that MED1 deficiency enhanced inflammation and the proliferation and migration of VSMCs in injured vascular tissue, which may result from the activation of NF-κB and STAT1 due to the accumulation of ROS.


Assuntos
Inflamação/metabolismo , Macrófagos/metabolismo , Subunidade 1 do Complexo Mediador/deficiência , Espécies Reativas de Oxigênio/metabolismo , Túnica Íntima/metabolismo , Animais , Hiperplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Túnica Íntima/patologia
9.
Zygote ; 27(3): 166-172, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31171048

RESUMO

SummaryRabbits play an important role in people's lives due to their high nutritional value and high-quality hair that can be used as raw material for textiles. Furthermore, rabbits are an important animal model for human disease, as genome-edited animals are particularly valuable for studying gene functions and pathogenesis. Somatic cell nuclear transfer (SCNT) is an important technique for producing genome-edited animals and it has great value in saving endangered species and in clone stem cell therapy. However, the low efficiency of SCNT limits its application, with the selection of suitable rabbit oocytes being crucial to its success. In the present study, we collected oocytes from ovarian follicles and stained them with 26 µM brilliant cresyl blue (BCB). We then matured the oocytes in vitro and used them for SCNT. Comparison of the BCB-positive oocytes with BCB-negative oocytes and the control group showed that the BCB-positive group had a significantly higher maturation rate (81.4% vs. 48.9% and 65.3% for the negative and control groups, respectively), cleavage rate (86.6% vs. 67.9% and 77.9%), blastocyst rate (30.5% vs. 12.8% and 19.6%), total number of blastocysts (90±7.5 vs. 65.3±6.3 and 67.5±5.7), and inner cell mass (ICM)/ trophectoderm (TE) index (42.3±4.2 vs. 30.2±2.1 and 33.9±5.1) (P<0.05). The BCB-positive group had a significantly lower apoptosis index (2.1±0.6 vs. 8.2±0.9 and 6.7±1.1 for the negative and control groups, respectively) (P<0.05). These findings demonstrate that BCB-positive oocytes have a higher maturation ability and developmental competence in vitro, indicating that BCB staining is a reliable method for selecting oocytes to enhance the efficiency of SCNT.


Assuntos
Blastocisto/citologia , Fertilização in vitro/métodos , Oócitos/citologia , Oxazinas/química , Coloração e Rotulagem/métodos , Animais , Células Cultivadas , Clonagem de Organismos , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Feminino , Técnicas de Maturação in Vitro de Oócitos , Técnicas de Transferência Nuclear , Oócitos/química , Folículo Ovariano/citologia , Coelhos
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 23(2): 506-11, 2015 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-25948214

RESUMO

OBJECTIVE: To explore the effective method for enrichment of rat peripheral blood-derived mesenchymal stem cells(PBMSC) and study the cell biological characteristics. METHODS: Peripheral mononuclear cells were isolated by density gradient centrifugation from blood of 4 week old rats after G-CSF mobilization. Thereafter, the fibroblast-like cells were acquired by plastic-adherent culture, and the proliferation curve was assayed. For analyzing surface markers of the second generation cultured isolated PBMSC, both flow cytometry(CD90, CD44, CD29, CD45, CD11b and CD79a) and immunocytochemical staining(CD73, CD105, CD34 and HLA-DR) methods were used. Furthermore, the differentiation capacities of PBMSC into osteocytes, chondrocytes and adipocytes were identified. RESULTS: (1) The adherent cells displayed typical colony-forming unit fibroblast(CFU-F) growth pattern after 6-7 day of primary culture and reached 80% confluence after 21 days of culture. The passaged PBMSC possessed high proliferative capacity and spindle growth pattern and was able to grown into exponential phase next day with a doubling time of 39.2 h. (2) PBMSC expressed mesenchymal markers such as CD90, CD44, CD29, CD73 and CD105, but failed to expressed markers of CD45, CD11b, CD79a, CD34 and HLA-DR. (3) After 21 days of culture in osteogenic, chondrogenic and adipogenic differentiation media, calcifying nodules, intracellular glycosaminoglycans and lipid droplets could be found by alizarin red, alcian blue and oil red-O staining, respectively. CONCLUSION: PBMSC can be enriched from rat peripheral blood with high purity and abundance by our methods. The growth and phenotypic characteristics of the isolated PBMSC are consistent with that of well-known MSC, and these cells possess the capability to multi-lineage mesoderm differentiation.


Assuntos
Células-Tronco Mesenquimais , Adipócitos , Animais , Diferenciação Celular , Células Cultivadas , Condrócitos , Citometria de Fluxo , Osteócitos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...