Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(2): 2428-2437, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166369

RESUMO

Lithium batteries have been widely used in our daily lives for their high energy density and long-term stability. However, their safety problems are of paramount concern for consumers, which restricts their scale applications. Gel polymer electrolytes (GPEs) compensate for the defects of liquid leakage and lower ionic conductivity of solid electrolytes, which have attracted a lot of attention. Herein, a 3D interconnected highly porous structural gel electrolyte was prepared with alginate dressing as a host material, poly(ethylene oxide) (PEO), and a commercial liquid electrolyte. With rich polar functional groups and (CH2-CH2-O) segments on the polymer matrix, the transportation of Li+ is faster and uniform; thus, the formations of lithium dendrite were significantly inhibited. The cycle stability of symmetrical Li||Li batteries with modified composite electrolytes (SAA) is greatly improved, and the overpotential remains stable after more than 1000 h. Meanwhile, under the same conditions, the cycle performance of batteries with unmodified electrolytes is inferior and overpotentials are nearly 1 V after 100 h. Additionally, the capacity retention of Li||LiFePO4 with SAA is more than 95% after 200 cycles, while those of the others declined sharply. The alginate dressing-based GPEs can greatly enhance the mechanical and thermal stability of PEO-based GPEs, which provides an environmentally friendly avenue for gel electrolytes' applications in lithium batteries.

2.
Sci Bull (Beijing) ; 67(21): 2235-2244, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36545999

RESUMO

Li+ solvation structures have a decisive influence on the electrode/electrolyte interfacial properties and battery performances. Reduced salt concentration may result in an organic rich solid electrolyte interface (SEI) and catastrophic cycle stability, which makes low concentration electrolytes (LCEs) rather challenging. Solvents with low solvating power bring in new chances to LCEs due to the weak salt-solvent interactions. Herein, an LCE with only 0.25 mol L-1 salt is prepared with fluoroethylene carbonate (FEC) and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropylether (D2). Molecular dynamics simulations and experiments prove that the low solvating power solvent FEC not only renders reduced desolvation energy to Li+ and improves the battery kinetics, but also promotes the formation of a LiF-rich SEI that hinders the electrolyte consumption. Li||Cu cell using the LCE shows a high coulombic efficiency of 99.20%, and LiNi0.6Co0.2Mn0.2O2||Li cell also exhibits satisfying capacity retention of 89.93% in 200 cycles, which demonstrates the great potential of solvating power regulation in LCEs development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...