Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
J Pharm Biomed Anal ; 245: 116192, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703747

RESUMO

Calcium sensing receptor (CaSR) has become the novel target of treating osteoporosis with herbal medicine Ligustri Lucidi Fructus (LLF), however, the bioactive compounds responsible for anti-osteoporosis are hard to clarify due to the complexity and diversity of chemical constituents in it. Herein, the immobilized CaSR column was packed with stationary phase materials, which were derived from integrating CLIP-tagged CaSR directly out of crude cell lysates onto the surface of silica gels (5.83 mg/g) in a site-specific covalent manner. The column had a great specificity of recognizing agonists and kept a good stability for at least 3 weeks. The two compounds from LLF extract were screened and identified as olenuezhenoside and ligustroflavone using the immobilized CaSR column in conjunction with mass spectrometry. Molecular docking predicted that both compounds were bound in venus flytrap (VFT) domain of CaSR by the formation of hydrogen bonds. Cellular results showed that both compounds exhibited the distinct osteogenic activity by enhancing the proliferation, differentiation and mineralization of osteoblastic cells. Our study demonstrated that, the immobilized protein column enables to screen the bioactive compounds rapidly from herbal extract, and the newly discovered natural product ligands towards CaSR, including olenuezhenoside and ligustroflavone, will be the candidates for the treatment of osteoporosis.


Assuntos
Ligustrum , Simulação de Acoplamento Molecular , Osteogênese , Extratos Vegetais , Receptores de Detecção de Cálcio , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/antagonistas & inibidores , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ligustrum/química , Humanos , Osteoblastos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Frutas/química , Animais , Osteoporose/tratamento farmacológico
2.
J Hazard Mater ; 473: 134647, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38762986

RESUMO

Microbially-driven soil formation process is an emerging technology for the ecological rehabilitation of alkaline tailings. However, the dominant microorganisms and their specific roles in soil formation processes remain unknown. Herein, a 1-year field-scale experiment was applied to demonstrate the effect of nitrogen input on the structure and function of the microbiome in alkaline bauxite residue. Results showed that the contents of nutrient components were increased with Penicillium oxalicum (P. oxalicum) incorporation, as indicated by the increasing of carbon and nitrogen mineralization and enzyme metabolic efficiency. Specifically, the increasing enzyme metabolic efficiency was associated with nitrogen input, which shaped the microbial nutrient acquisition strategy. Subsequently, we evidenced that P. oxalicum played a significant role in shaping the assemblages of core bacterial taxa and influencing ecological functioning through intra- and cross-kingdom network analysis. Furthermore, a recruitment experiment indicated that nitrogen enhanced the enrichment of core microbiota (Nitrosomonas, Bacillus, Pseudomonas, and Saccharomyces) and may provide benefits to fungal community bio-diversity and microbial network stability. Collectively, these results demonstrated nitrogen-based coexistence patterns among P. oxalicum and microbiome and revealed P. oxalicum-mediated nutrient dynamics and ecophysiological adaptations in alkaline microhabitats. It will aid in promoting soil formation and ecological rehabilitation of bauxite residue. ENVIRONMENT IMPLICATION: Bauxite residue is a highly alkaline solid waste generated during the Bayer process for producing alumina. Attempting to transform bauxite residue into a stable soil-like substrate using low-cost microbial resources is a highly promising engineering. However, the dominant microorganisms and their specific roles in soil formation processes remain unknown. In this study, we evidenced the nitrogen-based coexistence patterns among Penicillium oxalicum and microbiome and revealed Penicillium oxalicum-mediated nutrient dynamics and ecophysiological adaptations in alkaline microhabitats. This study can improve the understanding of core microbes' assemblies that affect the microbiome physiological traits in soil formation processes.

3.
Nat Commun ; 15(1): 2827, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565528

RESUMO

Phosphorus (P) limitation of ecosystem processes is widespread in terrestrial habitats. While a few auxiliary metabolic genes (AMGs) in bacteriophages from aquatic habitats are reported to have the potential to enhance P-acquisition ability of their hosts, little is known about the diversity and potential ecological function of P-acquisition genes encoded by terrestrial bacteriophages. Here, we analyze 333 soil metagenomes from five terrestrial habitat types across China and identify 75 viral operational taxonomic units (vOTUs) that encode 105 P-acquisition AMGs. These AMGs span 17 distinct functional genes involved in four primary processes of microbial P-acquisition. Among them, over 60% (11/17) have not been reported previously. We experimentally verify in-vitro enzymatic activities of two pyrophosphatases and one alkaline phosphatase encoded by P-acquisition vOTUs. Thirty-six percent of the 75 P-acquisition vOTUs are detectable in a published global topsoil metagenome dataset. Further analyses reveal that, under certain circumstances, the identified P-acquisition AMGs have a greater influence on soil P availability and are more dominant in soil metatranscriptomes than their corresponding bacterial genes. Overall, our results reinforce the necessity of incorporating viral contributions into biogeochemical P cycling.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Ecossistema , Fósforo , Metagenoma/genética , Solo
4.
Sci Rep ; 14(1): 6971, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521855

RESUMO

Doxorubicin has been used extensively as a potent anticancer agent, but its clinical use is limited by its cardiotoxicity. However, the underlying mechanisms remain to be fully elucidated. In this study, we tested whether NADPH oxidase 2 (Nox2) mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, resulting in cardiac atrophy and dysfunction in doxorubicin-induced heart failure. Nox2 knockout (KO) and wild-type (WT) mice were randomly assigned to receive a single injection of doxorubicin (15 mg/kg, i.p.) or saline. WT doxorubicin mice exhibited the decreases in survival rate, left ventricular (LV) wall thickness and LV fractional shortening and the increase in the lung wet-to-dry weight ratio 1 week after the injections. These alterations were attenuated in Nox2 KO doxorubicin mice. In WT doxorubicin mice, myocardial oxidative stress was increased, myocardial noradrenergic nerve fibers were reduced, myocardial expression of PGP9.5, GAP43, tyrosine hydroxylase and norepinephrine transporter was decreased, and these changes were prevented in Nox2 KO doxorubicin mice. Myocyte autophagy was increased and myocyte size was decreased in WT doxorubicin mice, but not in Nox2 KO doxorubicin mice. Nox2 mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy-both of which contribute to cardiac atrophy and failure after doxorubicin treatment.


Assuntos
Cardiomiopatias , Miócitos Cardíacos , NADPH Oxidase 2 , Animais , Camundongos , Autofagia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Doxorrubicina/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , NADPH Oxidase 2/genética , NADPH Oxidase 2/metabolismo , Estresse Oxidativo , Simpatectomia
5.
Calcif Tissue Int ; 114(4): 360-367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38308720

RESUMO

Kummell's disease (KD) is a rare clinical complication of osteoporotic vertebral compression fractures (OVCFs). Minimally invasive surgery is an important way to treat KD. In this paper, we used Percutaneous Vertebroplasty (PVP) and Vesselplasty (VP) to treat KD. 125 patients with KD were admitted to our hospital. Among them, 89 patients received PVP and 36 received VP. All patients underwent operations successfully. VAS scores and ODI of both groups at each postoperative time point were lower than preoperatively. Postoperative Cobb angle of both groups postoperatively was lower than preoperatively (p < 0.05). The anterior height and ratio of vertebra compression of both groups postoperatively was lower than preoperatively (p < 0.05). Cement leakage occurred in 16 vertebrae (16/89) in PVP group and one (1/36) in VP group. Two patients suffered from transient paraplegia in PVP group immediately after operation. Adjacent vertebral fractures occurred in one patient in PVP group and one in VP group. Re-fracture of affected vertebra occurred in one patient in PVP group. Besides, four patients suffered from bone cement loosening in PVP group while one in VP group. Both PVP and VP play an important effect in pain relief and functional recovery for the treatment of KD. And VP is more effective than PVP in preventing cement leakage.


Assuntos
Fraturas por Compressão , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Vertebroplastia , Humanos , Vertebroplastia/efeitos adversos , Estudos Retrospectivos , Fraturas da Coluna Vertebral/etiologia , Fraturas por Compressão/cirurgia , Fraturas por Compressão/complicações , Resultado do Tratamento , Cimentos Ósseos/uso terapêutico , Fraturas por Osteoporose/complicações
6.
World Neurosurg ; 183: e813-e817, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218435

RESUMO

BACKGROUND: The high incidence of nonunion in osteoporosis vertebral compression fractures (OVCFs) among the elderly population is a significant concern. But the hypothesis about etiopathogenesis of the intravertebral cleft (IVC) is not convincing. This study aims to investigate the association between spinopelvic parameters and IVC. METHODS: Patients with single segment IVC or healed vertebral compression fracture (HVCF) were retrospectively recruited for the study. Patients with IVC were assigned to the IVC group, the others were assigned to the HVCF group. We estimated whether IVC or HVCF locates the vertebra inflection point on lumbar lateral radiography. Distance between the sagittal line passing through the anterosuperior corner of S1and the center of the vertebra of healed fracture or with IVC (DSVA) and sacral slope (SS) were measured on lumbar lateral plain films. Intergroup spinopelvic parameters were analyzed. analysis to identify independent variables associated with IVC incidence. The receiver operating characteristics (ROC) curve was generated to identify the optimal cut-off point for statistically significant variables. RESULTS: Sixty-five patients were included in the study. Thirty patients (mean age: 74 ± 7.16 years) had single-level IVC, and 35 patients (mean age: 67.71 ± 7.30 years) had single-level HVCF. Age, body mass index (BMI), and DSVA were statistically different between the groups (all P < 0.05). The occurrence of IVC was related to the DSVA in the multivariate logistic regression analysis (OR = 0.73, P < 0.05). CONCLUSIONS: According to the results of this study, large DSVA was a risk factor for IVC formation in patients with OVCFs. Patients with global spinal malalignment should be actively observed during conservative treatment.


Assuntos
Fraturas por Compressão , Osteoporose , Fraturas por Osteoporose , Fraturas da Coluna Vertebral , Humanos , Idoso , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Fraturas por Compressão/complicações , Fraturas da Coluna Vertebral/complicações , Estudos Retrospectivos , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/complicações , Osteoporose/complicações , Osteoporose/diagnóstico por imagem
7.
Eur J Pharmacol ; 967: 176351, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290568

RESUMO

Doxorubicin is widely used for the treatment of human cancer, but its clinical use is limited by a cumulative dose-dependent cardiotoxicity. However, the mechanism of doxorubicin-induced cardiac atrophy and failure remains to be fully understood. In this study, we tested whether the specific NADPH oxidase 2 (Nox2) inhibitor GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, leading to the amelioration of cardiac atrophy and dysfunction in chronic doxorubicin-induced cardiomyopathy. Mice were randomized to receive saline, doxorubicin (2.5 mg/kg, every other day, 6 times) or doxorubicin plus GSK2795039 (2.5 mg/kg, twice a day, 9 weeks). Left ventricular (LV) total wall thickness and LV ejection fraction were decreased in doxorubicin-treated mice compared with saline-treated mice and the decreases were prevented by the treatment of the specific Nox2 inhibitor GSK2795039. The ratio of total heart weight to tibia length and myocyte cross-sectional area were decreased in doxorubicin-treated mice, and the decreases were attenuated by the GSK2795039 treatment. In doxorubicin-treated mice, myocardial Nox2 and 4-hydroxynonenal levels were increased, myocardial expression of GAP43, tyrosine hydroxylase and norepinephrine transporter, markers of sympathetic nerve terminals, was decreased, and these changes were prevented by the GSK2795039 treatment. The ratio of LC3 II/I, a marker of autophagy, and Atg5, Atg12 and Atg12-Atg5 conjugate proteins were increased in doxorubicin-treated mice, and the increases were attenuated by the GSK2795039 treatment. These findings suggest that inhibition of Nox2 by GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, thereby ameliorating cardiac atrophy and dysfunction after chronic doxorubicin treatment.


Assuntos
Aminopiridinas , Doxorrubicina , Células Musculares , Sulfonamidas , Animais , Camundongos , Atrofia/induzido quimicamente , Autofagia , Doxorrubicina/efeitos adversos , NADPH Oxidase 2
8.
BMC Musculoskelet Disord ; 24(1): 944, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057738

RESUMO

BACKGROUND: A novel interspinous distraction fusion (ISDF) device has been used to treat lumbar degenerative diseases. As a minimally invasive technique, ISDF differs from the traditional interspinous process distraction devices. Currently, biomechanical studies on ISDF are rare. OBJECTIVE: To investigate the biomechanical properties of the ISDF device (BacFuse) which is used to treat lumbar degenerative diseases. METHODS: Three-dimensional L3-L5 models were created. The models were divided into four groups: intact (M1), local decompression alone (M2), internal fixation alone (M3) and local decompression combined with internal fixation (M4), based on different surgical procedures. Local laminectomy was performed to resect the lower part of the L4 lamina and the upper part of the L5 lamina at the right lamina of L4/5 in the M2 and M4 groups. After meshing the models elements, Abaqus were used to perform the finite element (FE) analysis. The intervertebral range of motion (ROM) was measured during flexion, extension, left lateral bending, right lateral bending, left rotation and right rotation under a follower load of 400 N with a 7.5Nm moment. The distributions of disc and facet joint stresses were observed and recorded. Spinal vertebral stress was compared, and internal fixation device stress was observed. RESULTS: The ROM of L4/5 in M2 increased in flexion, extension, left lateral bending, right lateral bending, left rotation and right rotation compared with that in M1. In all motion directions, the ROM at L4/5 decreased, and the ROM at L3/4 increased after implantation of the ISDF device in M3 and M4 groups. The disc stress and facet joint stresses in the instrumented segment decreased after implantation of the ISDF device. The spinous process loaded a certain amount of stress in M3 and M4 groups. The spikes of the internal fixation device were loaded with the maximum stress. CONCLUSION: BacFuse exhibited a reduction in intervertebral ROM, as well as decreased stress on the intervertebral disc and facet joint, while also demonstrating a discernible impact on the upper adjacent segment.


Assuntos
Disco Intervertebral , Fusão Vertebral , Humanos , Análise de Elementos Finitos , Fusão Vertebral/métodos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Fixadores Internos , Disco Intervertebral/cirurgia , Amplitude de Movimento Articular , Fenômenos Biomecânicos
9.
Arch Osteoporos ; 19(1): 2, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097861

RESUMO

Weight change was an influencing factor of osteoporosis and fracture in a controversial way. Based on a nationally representative data, we found that weight change from obesity in midlife to non-obesity in late adulthood was associated with a reduction in the risk of osteoporosis and wrist fracture in male, but not in female. INTRODUCTION: Obesity is usually recognized as a protective factor to osteoporosis and osteoporotic fracture. However, it is still unclear whether historical weight status was associated with the risk of osteoporosis and fracture. The aim of this study was to investigate the relationship between weight change patterns across adulthood and the prevalence of osteoporosis and fracture. METHODS: Data from the National Health and Nutrition Examination Survey (NHANES) with 8725 US adults aged ≥ 40 years were analyzed in this study. Weight change patterns were categorized as "stable non-obese," "obese with earlier weight gain," "obese with recent weight gain," and "revert to non-obese" based on the body mass index (BMI) at 25 years old, 10 years prior to baseline and at baseline. Body mineral density (BMD) was measured using dual x-ray absorptiometry (DXA), and osteoporosis was diagnosed based on the World Health Organization criteria. Self-reported occurrence of osteoporotic fractures were determined by questionnaires. RESULTS: Compared with subjects in "stable non-obese" group, obese with earlier weight gain were positively related to the increase of BMD in both genders, while elevated BMD was only observed in female of "obese with recent weight gain" group and in male of "revert to non-obese" group after multiple adjustment. Moreover, changing from the obesity to non-obesity in the 10 years period before baseline was associated with a 81.6% lower risk of osteoporosis (odds ratio (OR) 0.184, 95% confidence interval (CI) 0.037-0.914 (P = 0.039)) and a 69.8% lower risk of wrist fracture (OR 0.302, 95%CI 0.120-0.757 (P = 0.012)) in male, but not in female. CONCLUSION: Weight change from obesity in midlife to non-obesity in late adulthood was associated with a reduction in the risk of osteoporosis and wrist fracture in male. Our findings support the importance of investigating the mechanism of weight change in different life period.


Assuntos
Osteoporose , Fraturas por Osteoporose , Fraturas do Punho , Adulto , Feminino , Masculino , Humanos , Inquéritos Nutricionais , Densidade Óssea , Osteoporose/epidemiologia , Osteoporose/complicações , Obesidade/epidemiologia , Obesidade/complicações , Fraturas por Osteoporose/epidemiologia , Fraturas por Osteoporose/complicações , Absorciometria de Fóton , Aumento de Peso , Fatores de Risco
10.
Proc Natl Acad Sci U S A ; 120(47): e2307529120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37956293

RESUMO

Marine reserves are considered essential for sustainable fisheries, although their effectiveness compared to traditional fisheries management is debated. The effect of marine reserves is mostly studied on short ecological time scales, whereas fisheries-induced evolution is a well-established consequence of harvesting. Using a size-structured population model for an exploited fish population of which individuals spend their early life stages in a nursery habitat, we show that marine reserves will shift the mode of population regulation from low size-selective survival late in life to low, early-life survival due to strong resource competition. This shift promotes the occurrence of rapid ecological cycles driven by density-dependent recruitment as well as much slower evolutionary cycles driven by selection for the optimal body to leave the nursery grounds, especially with larger marine reserves. The evolutionary changes increase harvesting yields in terms of total biomass but cause disproportionately large decreases in yields of larger, adult fish. Our findings highlight the importance of carefully considering the size of marine reserves and the individual life history of fish when managing eco-evolutionary marine systems to ensure both population persistence as well as stable fisheries yields.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Peixes , Biomassa , Pesqueiros , Dinâmica Populacional
11.
J Biomed Opt ; 28(10): 106001, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37841506

RESUMO

Significance: For research on retinitis pigmentosa in humans, the Royal College of Surgeons (RCS) rat is commonly used as the primary animal model since the disease process is similar. Therefore, it is necessary to understand how the disease develops and determine whether the treatment is effective. Aim: In this study, structural and microvascular change of retinal degeneration in RCS rats was assessed non-invasively on specific dates over 3.5 months. Approach: Using a high-resolution spectral domain (SD) optical coherence tomography angiography (OCTA), the retinal degeneration in RCS rats, from day 14 until day 126, was qualitatively and quantitatively analyzed. Results: Aside from the thinning of the retina thickness starting from 2 weeks of age, blood vessels in the deep layer of the retina also began to degenerate at about 4 weeks of age. Hole structures appeared at the inner nuclear layer and the inner plexiform layer by the age of 10 weeks. Observations of abnormal angiogenesis in the choroid began by 12 weeks of age. Conclusions: We conducted a longitudinal study of retina degeneration structure and vascular changes in an RCS rat model using a supercontinuum laser based high-resolution SD-OCTA. Combined with OCTA, OCT leads to a better understanding of photoreceptor pathology as retinal degeneration by identifying tissue and vessel loss.


Assuntos
Degeneração Retiniana , Cirurgiões , Humanos , Ratos , Animais , Recém-Nascido , Lactente , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/patologia , Tomografia de Coerência Óptica/métodos , Estudos Longitudinais , Retina/diagnóstico por imagem , Retina/patologia , Angiofluoresceinografia/métodos
12.
Acta Biomater ; 171: 363-377, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37739251

RESUMO

A key parameter for the success of most cellular implants is the formation of a complete and comprehensive intra-implant vessel network. Pre-vascularization, the generation of vessel structures in vitro prior to transplantation, provides accelerated implant perfusion via anastomosis, but scalability and ease of integration hinder clinical translation. For fibrin-based vasculogenesis approaches, the remodeling and degradation of the fragile, hydrogel matrix during the formation of vessel-like structures results in rapid, cell-mediated construct compaction leading to dense, capillary-like structures with ineffective network coverage. To resolve these challenges, vasculogenic hydrogels were embedded within a highly porous, biostable three-dimensional (3D) polydimethylsiloxane (PDMS) scaffold. Using reverse-casting of 3D-printed molds, scaffolds exhibited highly interconnected and reproducible pore structures. Pore size was optimized via in vivo screening of intra-device angiogenesis. The inclusion of the PDMS frame with vasculogenic hydrogels significantly reduced fibrin compaction in vitro, resulting in easily manipulated constructs with predictable dimensionality and increased surface area compared to fibrin hydrogel alone. Globally, vascular morphogenesis was altered by the PDMS frame, with significantly larger and less dense network structures. Vasculogenic proteomic evaluation showed a temporal impact of the addition of the PDMS frame, indicating altered cellular proliferation and migration signaling. This work establishes a platform for improving the generation of translational pre-vascularized networks for greater flexibility to meet the needs of clinically scaled, engineered tissues. STATEMENT OF SIGNIFICANCE: Competent intra-implant vascularization is a significant issue hindering the success of engineered tissues. Pre-vascularization approaches, whereby a vascular network is formed in vitro and subsequently implanted into the host to anastomose, is a promising approach but it is limited by the compacted, dense, and poorly functional microcapillary structures typically formed using soft hydrogels. Herein, we have uniquely addressed this challenge by adding a 3D printed PDMS-based open framework structure that serves to prevent hydrogel compaction. Globally, we observed distinct differences in overall construct geometry, vascular network density, compaction, and morphogenesis, indicating that this PDMS framework lead to elevated maturity of this in vitro network while retaining its global dimensions. Overall, this novel approach elevates the translational potential of pre-vascularized constructs.


Assuntos
Materiais Biocompatíveis , Proteômica , Materiais Biocompatíveis/farmacologia , Engenharia Tecidual/métodos , Hidrogéis/farmacologia , Hidrogéis/química , Morfogênese , Fibrina/farmacologia , Impressão Tridimensional , Alicerces Teciduais/química
13.
J Alzheimers Dis ; 94(4): 1265-1301, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424469

RESUMO

Alzheimer's disease (AD), the most common cause of dementia, is a chronic neurodegenerative disease induced by multiple factors. The high incidence and the aging of the global population make it a growing global health concern with huge implications for individuals and society. The clinical manifestations are progressive cognitive dysfunction and lack of behavioral ability, which not only seriously affect the health and quality of life of the elderly, but also bring a heavy burden to the family and society. Unfortunately, almost all the drugs targeting the classical pathogenesis have not achieved satisfactory clinical effects in the past two decades. Therefore, the present review provides more novel ideas on the complex pathophysiological mechanisms of AD, including classical pathogenesis and a variety of possible pathogenesis that have been proposed in recent years. It will be helpful to find out the key target and the effect pathway of potential drugs and mechanisms for the prevention and treatment of AD. In addition, the common animal models in AD research are outlined and we examine their prospect for the future. Finally, Phase I, II, III, and IV randomized clinical trials or on the market of drugs for AD treatment were searched in online databases (Drug Bank Online 5.0, the U.S. National Library of Medicine, and Alzforum). Therefore, this review may also provide useful information in the research and development of new AD-based drugs.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Animais , Doença de Alzheimer/patologia , Qualidade de Vida , Descoberta de Drogas , Modelos Animais
14.
Sci Total Environ ; 898: 165584, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467988

RESUMO

The applications of sulphate-reducing microorganisms (SRMs) in acid mine drainage (AMD) treatment systems have received extensive attention due to their ability to reduce sulphate and stabilize metal(loid)s. Despite great phylogenetic diversity of SRMs, only a few have been used in AMD treatment bioreactors. In situ enrichment could be an efficient approach to select new effective SRMs for AMD treatment. Here, we performed in situ enrichment of SRMs in highly stratified AMD sediment cores using different kinds of carbon source mixture. The dsrAB (dissimilatory sulfite reductase) genes affiliated with nine phyla (two archaeal and seven bacterial phyla) and 26 genera were enriched. Remarkably, those genes affiliated with Aciduliprofundum and Vulcanisaeta were enriched in situ in AMD-related environments for the first time, and their relative abundances were negatively correlated with pH. Furthermore, 107 dsrAB-containing metagenome-assembled genomes (MAGs) were recovered from metagenomic datasets, with 14 phyla (two archaeal and 12 bacterial phyla) and 15 genera. The relative abundances of MAGs were positively correlated with total carbon and sulphate contents. Our findings expanded the diversity of SRMs that can be enriched in AMD sediment, and revealed the physiochemical properties that might affect the growth of SRMs, which provided guidance for AMD treatment bioreators.


Assuntos
Microbiota , Sulfatos , Filogenia , Bactérias/genética , Archaea , Ácidos
15.
Eur J Pharmacol ; 952: 175805, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37247812

RESUMO

Pathological angiogenesis plays a major role in many disease processes, including cancer and diabetic retinopathy. Antiangiogenic therapy is a potential management for pathologic angiogenesis. The novel synthetic compound 221S-1a, derived from captopril, tanshinol and borneol, may have antiangiogenic properties. On the basis of MS, NMR and HPLC analysis, the structure of 221S-1a was identified. The cellular uptake and metabolism of this compound was also observed. Next, the antiangiogenic properties of 221S-1a were evaluated in tumor-xenograft and OIR models in vivo. The inhibitory properties of 221S-1a on endothelial cell proliferation, migration, tube formation and sprouting were detected in vitro. Furthermore, 221S-1a induced G1/S phase arrest was detected by PI staining flow cytometry analysis and Cyclin D, Cyclin E expression. 221S-1a inhibited ERK1/2 activation and nuclear translocation, in addition to downregulation of c-Myc, a transcription factor that regulates cell cycle progression. Molecular docking indicated the interaction of 221S-1a with the ATP-binding site of ERK2, leading to the inhibition of ERK2 phosphorylation and a concomitant inhibition of ERK1 phosphorylation. In conclusion, 221S-1a inhibited the G1/S phase transition by blocking the ERK1/2/c-Myc pathway to reduce tumor and OIR retinal angiogenesis. These novel findings suggest that 221S-1a is a potential pharmacologic candidate for treating pathological angiogenesis.


Assuntos
Proteínas Proto-Oncogênicas c-myc , Transdução de Sinais , Humanos , Simulação de Acoplamento Molecular , Neovascularização Patológica/tratamento farmacológico , Proliferação de Células
16.
Adv Healthc Mater ; 12(19): e2300239, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36971050

RESUMO

Insufficient oxygenation is a key obstacle in the design of clinically scalable tissue-engineered grafts. In this work, an oxygen-generating composite material, termed OxySite, is created through the encapsulation of calcium peroxide (CaO2 ) within polydimethylsiloxane and formulated into microbeads for ease in tissue integration. Key material parameters of reactant loading, porogen addition, microbead size, and an outer rate-limiting layer are modulated to characterize oxygen generation kinetics and their suitability for cellular applications. In silico models are developed to predict the local impact of different OxySite microbead formulations on oxygen availability within an idealized cellular implant. Promising OxySite microbead variants are subsequently coencapsulated with murine ß-cells within macroencapsulation devices, resulting in improved cellular metabolic activity and function under hypoxic conditions when compared to controls. Additionally, the coinjection of optimized OxySite microbeads with murine pancreatic islets within a confined transplant site demonstrates ease of integration and improved primary cell function. These works highlight the broad translatability delivered by this new oxygen-generating biomaterial format, whereby the modularity of the material provides customization of the oxygen source to the specific needs of the cellular implant.


Assuntos
Ilhotas Pancreáticas , Oxigênio , Camundongos , Animais , Oxigênio/metabolismo , Microesferas , Ilhotas Pancreáticas/metabolismo , Hipóxia , Hipóxia Celular , Engenharia Tecidual/métodos
17.
J Ethnopharmacol ; 310: 116367, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36914037

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Radix et Rhizoma Salviae Miltiorrhizae (Salvia miltiorrhiza Bge., Lamiaceae, Danshen in Chinese) and Chuanxiong Rhizoma (rhizomes of Ligusticum chuanxiong Hort., Apiaceae, Chuanxiong in Chinese) both are important traditional Chinese medicine (TCM) for activating blood and eliminating stasis. Danshen-chuanxiong herb pair has been used for more than 600 years in China. Guanxinning injection (GXN) is a Chinese clinical prescription refined from aqueous extract of Danshen and Chuanxiong at the ratio of 1:1 (w/w). GXN has been mainly used in the clinical therapy of angina, heart failure (HF) and chronic kidney disease in China for almost twenty years. AIM OF THE STUDY: This study aimed to explore the role of GXN on renal fibrosis in heart failure mice and the regulation of GXN on SLC7A11/GPX4 axis. MATARIALS AND METHODS: The transverse aortic constriction model was used to mimic HF accompanied by kidney fibrosis model. GXN was administrated by tail vein injection in dose of 12.0, 6.0, 3.0 mL/kg, respectively. Telmisartan (6.1 mg/kg, gavage) was used as a positive control drug. Cardiac ultrasound indexes of ejection fraction (EF), cardiac output (CO), left ventricle volume (LV Vol), HF biomarker of pro-B type natriuretic peptide (Pro-BNP), kidney function index of serum creatinine (Scr), kidney fibrosis index of collagen volume fraction (CVF) and connective tissue growth factor (CTGF) were evaluated and contrasted. Metabolomic method was employed to analyze the endogenous metabolites changes in kidneys. Besides, contents of catalase (CAT), xanthine oxidase (XOD), nitricoxidesynthase (NOS), glutathione peroxidase 4 (GPX4), the x(c)(-) cysteine/glutamate antiporter (SLC7A11) and ferritin heavy chain (FTH1) in kidney were quantitatively analyzed. In addition, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to analyze the chemical composition of GXN and network pharmacology was used to predict possible mechanisms and the active ingredients of GXN. RESULTS: The cardiac function indexes of EF, CO and LV Vol, kidney functional indicators of Scr, the degree of kidney fibrosis indicators CVF and CTGF were all relieved to different extent for the model mice treated with GXN. 21 differential metabolites involved in redox regulation, energy metabolism, organic acid metabolism, nucleotide metabolism, etc were identified. Aspartic acid, homocysteine, glycine, and serine, methionine, purine, phenylalanine and tyrosine metabolism were found to be the core redox metabolic pathways regulated by GXN. Furthermore, GXN were found to increase CAT content, upregulate GPX4, SLC7A11 and FTH1 expression in kidney significantly. Not only that, GXN also showed good effect in down-regulating XOD and NOS contents in kidney. Besides, 35 chemical constituents were initially identified in GXN. Active ingredients of GXN-targets-related enzymes/transporters-metabolites network was established to find out that GPX4 was a core protein for GXN and the top 10 active ingredients with the most relevant to renal protective effects of GXN were rosmarinic acid, caffeic acid, ferulic acid, senkyunolide E, protocatechualdehyde, protocatechuic acid, danshensu, L-Ile, vanillic acid, salvianolic acid A. CONCLUSION: GXN could significantly maintain cardiac function and alleviate the progression of fibrosis in the kidney for HF mice, and the mechanisms of action were related to regulating redox metabolism of aspartate, glycine, serine, and cystine metabolism and SLC7A11/GPX4 axis in kidney. The cardio-renal protective effect of GXN may be attributed to multi-components like rosmarinic acid, caffeic acid, ferulic acid, senkyunolide E, protocatechualdehyde, protocatechuic acid, danshensu, L-Ile, vanillic acid, salvianolic acid A et al.


Assuntos
Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Salvia miltiorrhiza , Camundongos , Animais , Cromatografia Líquida , Ácido Vanílico/análise , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Salvia miltiorrhiza/química , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Glicina , Ácido Rosmarínico
18.
Front Plant Sci ; 14: 1133062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36959930

RESUMO

Mulberry (Morus alba L.) has a special significance in the history of agriculture and economic plant cultivation. Mulberry has strong environmental adaptability, a wide planting range, and abundant output. It is not only an important resource for silkworm breeding but also a raw ingredient for various foods and has great potential for the development of biological resources. The bioactivities of mulberry in different planting areas are not the same, which is an obstacle to the development of mulberry. This study collected information on the planting conditions of mulberry branches in 12 planting areas, such as altitude, temperature difference, and precipitation. A comparison of the levels of 12 constituents of mulberry branches from mulberry grown in different planting areas was then made. An in vitro model was used to study the bioactivities of mulberry branches in the 12 planting areas, and mathematical analysis was used to explain the possible reasons for the differences in the composition and bioactivities of mulberry branches in different planting areas. After studying mulberry samples from 12 planting areas in China, it was found that a small temperature difference could affect the antiapoptotic effect of mulberry branch on microvascular endothelial cells by changing the levels and proportions of rutin, hyperoside, and morusin. Adequate irrigation can promote the antioxidation of the mulberry branch on microvascular endothelial cells by changing the levels and proportions of scopoletin and quercitrin. The results of the analysis of planting conditions and the levels of active constituents and their correlation with bioactivities support the improvement of mulberry planting conditions and have great significance in the rational development of mulberry resources. This is the first time that a mathematical analysis method was used to analyze the effects of planting conditions on mulberry biological activity.

19.
Toxicol Appl Pharmacol ; 463: 116412, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36764612

RESUMO

Doxorubicin (DOX), which is widely used for the treatment of cancer, induces cardiomyopathy associated with NADPH oxidase-derived reactive oxygen species. GSK2795039 is a novel small molecular NADPH oxidase 2 (Nox2) inhibitor. In this study, we investigated whether GSK2795039 prevents receptor-interacting protein kinase 1 (RIP1)-RIP3-mixed lineage kinase domain-like protein (MLKL)-mediated cardiomyocyte necroptosis in DOX-induced heart failure through NADPH oxidase inhibition. Eight-week old mice were randomly divided into 4 groups: control, GSK2795039, DOX and DOX plus GSK2795039. H9C2 cardiomyocytes were treated with DOX and GSK2795039. In DOX-treated mice, the survival rate was reduced, left ventricular (LV) end-systolic dimension was increased and LV fractional shortening was decreased, and these alterations were attenuated by the GSK2795039 treatment. GSK2795039 inhibited not only myocardial NADPH oxidase subunit gp91phox (Nox2) protein, but also p22phox, p47phox and p67phox proteins and prevented oxidative stress 8-hydroxy-2'-deoxyguanosine levels in DOX-treated mice. RIP3 protein and phosphorylated RIP1 (p-RIP1), p-RIP3 and p-MLKL proteins, reflective of their respective kinase activities, markers of necroptosis, were markedly increased in DOX-treated mice, and the increases were prevented by GSK2795039. GSK2795039 prevented the increases in serum lactate dehydrogenase and myocardial fibrosis in DOX-treated mice. Similarly, in DOX-treated cardiomyocytes, GSK2795039 improved cell viability, attenuated apoptosis and necrosis and prevented the increases in p-RIP1, p-RIP3 and p-MLKL expression. In conclusion, GSK2795039 prevents RIP1-RIP3-MLKL-mediated cardiomyocyte necroptosis through inhibition of NADPH oxidase-derived oxidative stress, leading to the improvement of myocardial remodeling and function in DOX-induced heart failure. These findings suggest that GSK2795039 may have implications for the treatment of DOX-induced cardiomyopathy.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Necroptose , Necrose/metabolismo , Apoptose/fisiologia , Estresse Oxidativo , Doxorrubicina/metabolismo , NADPH Oxidases/metabolismo , Proteínas Quinases/metabolismo
20.
Geriatr Orthop Surg Rehabil ; 14: 21514593231158277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798633

RESUMO

Introduction: This article introduced the management of a case with severe left lower extremity pain and forced hip flexion after posterior lumbar interbody fusion and a final diagnosis of left psoas hematoma. Materials and methods: Here we reported a case of a 65-year-old female received posterior lumbar interbody fusion (PLIF) for L4-L5 spondylolisthesis and L4 instability. On the postoperative day one, the hemoglobin level decreased from 108 g/L to 78 g/L. Meanwhile, the patient presented low back pain and inner thigh radiating pain (VAS pain scale = 8). The pain was so severe that it could be barely relieved by keeping left hip in flexion position. On the postoperative day 6, the pain was still severe even after taking mecobalamin, ankylosaurus, dehydrant agents and central pain relievers(VAS pain scale = 9). Computed Tomography indicated a left intramuscular hematoma image extending down to the left iliac fossa. Active hemorrhage of lumbar segmental arterial was detected by B-ultrasound. The patient then received vascular embolization under angiography on the postoperative day 7. Results: The pain in the low back and inner thigh were significantly relieved after the procedure (VAS3-4). On the postoperative day nineteen, the left hip can be fully extended, but the patient was still not able to stand on left leg without a walking stick. On the postoperative day 27, she was able to walk independently. Discussion: The main reason for the complication was the second conical dilation channel slipped and entered the lateral side of the vertebral body along the transverse process. After timely embolization, pain was significantly relieved and muscle strength was improved. Conclusions: Angiographic embolization is an effective treatment for psoas hematoma after posterior lumbar interbody fusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...