Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Space Sci Rev ; 219(8): 81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046182

RESUMO

The habitability of Europa is a property within a system, which is driven by a multitude of physical and chemical processes and is defined by many interdependent parameters, so that its full characterization requires collaborative investigation. To explore Europa as an integrated system to yield a complete picture of its habitability, the Europa Clipper mission has three primary science objectives: (1) characterize the ice shell and ocean including their heterogeneity, properties, and the nature of surface-ice-ocean exchange; (2) characterize Europa's composition including any non-ice materials on the surface and in the atmosphere, and any carbon-containing compounds; and (3) characterize Europa's geology including surface features and localities of high science interest. The mission will also address several cross-cutting science topics including the search for any current or recent activity in the form of thermal anomalies and plumes, performing geodetic and radiation measurements, and assessing high-resolution, co-located observations at select sites to provide reconnaissance for a potential future landed mission. Synthesizing the mission's science measurements, as well as incorporating remote observations by Earth-based observatories, the James Webb Space Telescope, and other space-based resources, to constrain Europa's habitability, is a complex task and is guided by the mission's Habitability Assessment Board (HAB).

2.
Space Sci Rev ; 219(6): 46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636325

RESUMO

The Galileo mission to Jupiter revealed that Europa is an ocean world. The Galileo magnetometer experiment in particular provided strong evidence for a salty subsurface ocean beneath the ice shell, likely in contact with the rocky core. Within the ice shell and ocean, a number of tectonic and geodynamic processes may operate today or have operated at some point in the past, including solid ice convection, diapirism, subsumption, and interstitial lake formation. The science objectives of the Europa Clipper mission include the characterization of Europa's interior; confirmation of the presence of a subsurface ocean; identification of constraints on the depth to this ocean, and on its salinity and thickness; and determination of processes of material exchange between the surface, ice shell, and ocean. Three broad categories of investigation are planned to interrogate different aspects of the subsurface structure and properties of the ice shell and ocean: magnetic induction, subsurface radar sounding, and tidal deformation. These investigations are supplemented by several auxiliary measurements. Alone, each of these investigations will reveal unique information. Together, the synergy between these investigations will expose the secrets of the Europan interior in unprecedented detail, an essential step in evaluating the habitability of this ocean world.

3.
Space Sci Rev ; 219(4): 34, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251605

RESUMO

The goal of NASA's Europa Clipper Mission is to investigate the habitability of the subsurface ocean within the Jovian moon Europa using a suite of ten investigations. The Europa Clipper Magnetometer (ECM) and Plasma Instrument for Magnetic Sounding (PIMS) investigations will be used in unison to characterize the thickness and electrical conductivity of Europa's subsurface ocean and the thickness of the ice shell by sensing the induced magnetic field, driven by the strong time-varying magnetic field of the Jovian environment. However, these measurements will be obscured by the magnetic field originating from the Europa Clipper spacecraft. In this work, a magnetic field model of the Europa Clipper spacecraft is presented, characterized with over 260 individual magnetic sources comprising various ferromagnetic and soft-magnetic materials, compensation magnets, solenoids, and dynamic electrical currents flowing within the spacecraft. This model is used to evaluate the magnetic field at arbitrary points around the spacecraft, notably at the locations of the three fluxgate magnetometer sensors and four Faraday cups which make up ECM and PIMS, respectively. The model is also used to evaluate the magnetic field uncertainty at these locations via a Monte Carlo approach. Furthermore, both linear and non-linear gradiometry fitting methods are presented to demonstrate the ability to reliably disentangle the spacecraft field from the ambient using an array of three fluxgate magnetometer sensors mounted along an 8.5-meter (m) long boom. The method is also shown to be useful for optimizing the locations of the magnetometer sensors along the boom. Finally, we illustrate how the model can be used to visualize the magnetic field lines of the spacecraft, thus providing very insightful information for each investigation. Supplementary Information: The online version contains supplementary material available at 10.1007/s11214-023-00974-y.

4.
J Geophys Res Space Phys ; 127(9): e2022JA030569, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36245708

RESUMO

Europa's plasma interaction is inextricably coupled to its O2 atmosphere by the chemical processes that generate plasma from the atmosphere and the sputtering of magnetospheric plasma against Europa's ice to generate O2. Observations of Europa's atmosphere admit a range of possible densities and spatial distributions (Hall et al., 1998, https://doi.org/10.1086/305604). To better understand this system, we must characterize how different possible configurations of the atmosphere affect the 3D magnetic fields and bulk plasma properties near Europa. To accomplish this, we conducted a parameter study using a multi-fluid magnetohydrodynamic model for Europa's plasma interaction (Harris et al., 2021, https://doi.org/10.1029/2020ja028888). We varied parameters of Europa's atmosphere, as well as the conditions of Jupiter's magnetosphere, over 18 simulations. As the scale height and density of Europa's atmosphere increase, the extent and density of the ionosphere increase as well, generating strong magnetic fields that shield Europa's surface from impinging plasma on the trailing hemisphere. We also calculate the precipitation rate of magnetospheric plasma onto Europa's surface. As the O2 column density increased from (1-2.5) × 1014 cm-2, the precipitation rate decreased sharply then leveled off at 2 × 1024 ions/s for simulations with low magnetospheric plasma density and 6.4 × 1024 ions/s for simulations with high magnetospheric plasma density. These results indicate that the coupling between Europa's plasma populations and its atmosphere leads to feedback that limits increases in the ionosphere density.

5.
J Geophys Res Space Phys ; 127(3): e2021JA030181, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35865743

RESUMO

We expand on previous observations of magnetic reconnection in Jupiter's magnetosphere by constructing a survey of ion-inertial scale plasmoids in the Jovian magnetotail. We developed an automated detection algorithm to identify reversals in the B θ component and performed the minimum variance analysis for each identified plasmoid to characterize its helical structure. The magnetic field observations were complemented by data collected using the Juno Waves instrument, which is used to estimate the total electron density, and the JEDI energetic particle detectors. We identified 87 plasmoids with "peak-to-peak" durations between 10 and 300 s. Thirty-one plasmoids possessed a core field and were classified as flux-ropes. The other 56 plasmoids had minimum field strength at their centers and were termed O-lines. Out of the 87 plasmoids, 58 had in situ signatures shorter than 60 s, despite the algorithm's upper limit being 300 s, suggesting that smaller plasmoids with shorter durations were more likely to be detected by Juno. We estimate the diameter of these plasmoids assuming a circular cross section and a travel speed equal to the Alfven speed in the surrounding lobes. Using the electron density inferred by Waves, we contend that these plasmoid diameters were within an order of the local ion-inertial length. Our results demonstrate that magnetic reconnection in the Jovian magnetotail occurs at ion scales like in other space environments. We show that ion-scale plasmoids would need to be released every 0.1 s or less to match the canonical 1 ton/s rate of plasma production due to Io.

6.
J Geophys Res Space Phys ; 127(4): e2022JA030280, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35866073

RESUMO

At Mercury, several processes can release ions and neutrals out of the planet's surface. Here we present enhancements of planetary ions (Na+-group ions) in Mercury's northern magnetospheric cusp during flux transfer event (FTE) "showers." FTE showers are intervals of intense dayside magnetopause reconnection, during which FTEs are observed in quick succession, that is, only separated by a few seconds. This study identifies 1953 FTE shower intervals and 1795 Non-FTE shower intervals. During the shower intervals, this study shows that the FTEs form a solar wind entry layer equatorward of the northern magnetospheric cusp. In this entry layer, solar wind ions are accelerated and move downward (i.e., planetward) toward the cusp, which sputter upward-moving planetary ions with a particle flux of 1 × 1011 m-2 s-1 within 1 min. The precipitation rate is estimated to increase by an order of magnitude during FTE showers, to 2 × 1025 s-1, and the neutral density of the exosphere could vary by >10% in response to this FTE-driven sputtering. Such rapid large-scale variations driven by dayside reconnection may explain the minute-to-minute changes in Mercury's exosphere, especially on the high latitudes, observed by ground-based telescopes on Earth. Our MESSENGER in situ observation of enhanced planetary ions in the entry layer likely corresponds to an escape channel for Mercury's planetary ions. Comprehensive, future multipoint measurements made by BepiColombo will greatly enhance our understanding of the processes contributing to Mercury's dynamic exosphere and magnetosphere.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35935034

RESUMO

Recent improvements in data collection volume from planetary and space physics missions have allowed the application of novel data science techniques. The Cassini mission for example collected over 600 gigabytes of scientific data from 2004 to 2017. This represents a surge of data on the Saturn system. In comparison, the previous mission to Saturn, Voyager over 20 years earlier, had onboard a ~70 kB 8-track storage ability. Machine learning can help scientists work with data on this larger scale. Unlike many applications of machine learning, a primary use in planetary space physics applications is to infer behavior about the system itself. This raises three concerns: first, the performance of the machine learning model, second, the need for interpretable applications to answer scientific questions, and third, how characteristics of spacecraft data change these applications. In comparison to these concerns, uses of "black box" or un-interpretable machine learning methods tend toward evaluations of performance only either ignoring the underlying physical process or, less often, providing misleading explanations for it. The present work uses Cassini data as a case study as these data are similar to space physics and planetary missions at Earth and other solar system objects. We build off a previous effort applying a semi-supervised physics-based classification of plasma instabilities in Saturn's magnetic environment, or magnetosphere. We then use this previous effort in comparison to other machine learning classifiers with varying data size access, and physical information access. We show that incorporating knowledge of these orbiting spacecraft data characteristics improves the performance and interpretability of machine leaning methods, which is essential for deriving scientific meaning. Building on these findings, we present a framework on incorporating physics knowledge into machine learning problems targeting semi-supervised classification for space physics data in planetary environments. These findings present a path forward for incorporating physical knowledge into space physics and planetary mission data analyses for scientific discovery.

8.
Science ; 332(6034): 1186-9, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21566160

RESUMO

Extensive volcanism and high-temperature lavas hint at a global magma reservoir in Io, but no direct evidence has been available. We exploited Jupiter's rotating magnetic field as a sounding signal and show that the magnetometer data collected by the Galileo spacecraft near Io provide evidence of electromagnetic induction from a global conducting layer. We demonstrate that a completely solid mantle provides insufficient response to explain the magnetometer observations, but a global subsurface magma layer with a thickness of over 50 kilometers and a rock melt fraction of 20% or more is fully consistent with the observations. We also place a stronger upper limit of about 110 nanoteslas (surface equatorial field) on the dynamo dipolar field generated inside Io.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...