Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(4): 6425-6436, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151558

RESUMO

Rare earth (RE) is an important strategic resource; however, there has been a growing concern about the environmental problems caused by RE mining, such as ammonia nitrogen pollution and heavy metal pollution. There is a limited research about the behavior of leaching agents and the fractionation of RE and heavy metal during the mining process for ion adsorption of rare earth ore (IRE-ore) in the previously available papers. In this study, (NH4)2SO4 solution, which commonly used in the production of mining IRE-ore, was used as a leaching agent. The adsorption behavior of ore soils on ammonium ions was explored by batch experiments. The adsorption process of IRE-ore on ammonium ions followed a pseudo-second-order equation and was controlled by the kinetics of surface adsorption and intra-particle diffusion; the ammonium ion adsorption isotherm conformed to the Freundlich isotherm equilibrium equation, and the higher concentration advantage made the ore soils possess a higher adsorption capacity of ammonium ion. In addition, the fractionation characteristics of lanthanum (La), cerium (Ce), and lead (Pb) in the ore soil during the leaching process were simulated based on the batch and column leaching experiments. The results demonstrated that the exchangeable states of La and Ce in IRE-ore were high, and the exchangeable, carbonate-bound La and Ce were almost all leached out by (NH4)2SO4 leaching agent, while the most of exchangeable Pb flowed out along with leaching agent, and a small amount of leached Pb in the ore soil was converted to iron and manganese oxide-bound Pb and enriched in the direction of migration of the leaching solution, and when the environment (e.g., pH and Eh) changed, this part of Pb may be re-activated. Our research might serve as crucial baseline knowledge for the adsorption of ammonium ions by ore soils, and provide a data reference for reducing the use of leaching agents and developing sustainable technologies for green mining of ion-adsorption RE ores.


Assuntos
Compostos de Amônio , Cério , Metais Pesados , Metais Terras Raras , Poluentes do Solo , Chumbo , Poluentes do Solo/análise , Metais Terras Raras/análise , Metais Pesados/análise , Solo , Lantânio , Íons , Concentração de Íons de Hidrogênio
2.
Langmuir ; 27(2): 672-7, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21166437

RESUMO

A facile and efficient approach has been developed to speed up the fabrication of LBL films through sequential dipping in vigorously agitated solutions. By this agitated-dipping (AD) LBL technique, the multilayer films of PAH and PSS were fabricated. The resulting films were explored by UV-vis spectroscopy, X-ray reflectivity, and AFM. Meanwhile, the comparison of the AD and conventional LBL films was made, which demonstrated that AD LBL can decrease dipping time by more than 15 times without reducing film quality remarkably. In addition, to verify the generality of AD LBL, we studied the AD LBL films of PDDA/PSS and PAH/PAA preliminarily as well. AD LBL promotes the efficiency of conventional LBL greatly while preserving its most advantages, such as simplicity, cheapness, precise control, universality in substrates, recycling use of sample solutions, and so on. It would be a promising alternative to build up LBL films rapidly.

3.
Langmuir ; 26(11): 8270-3, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20426432

RESUMO

Layer-by-layer (LBL) films of poly(lactic acid) nanoparticles (PLA NPs) and poly(ethyleneimine) (PEI) were fabricated as a novel drug-delivery system. The PLA NPs, which encapsulated pyrene as a model drug, were prepared by nanoprecipitation methods. The assembly process of PLA NPs/PEI LBL films was monitored by UV-vis spectroscopy, and the load of pyrene in the multilayer films was verified by fluorescence spectroscopy. The morphology of the PLA NPs/PEI LBL films was observed by SEM. The release profile of pyrene from the LBL films in PBS solutions was further studied, and the result indicated that the PLA NPs/PEI films were capable of sustainably releasing pyrene as expected. The fabrication of PLA NPs/PEI LBL films provides a new facile method for drug delivery and paves the way for loading multiple types of drugs into a single LBL film.


Assuntos
Portadores de Fármacos , Ácido Láctico/química , Nanopartículas , Polímeros/química , Microscopia Eletrônica de Varredura , Poliésteres , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...