Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Insects ; 13(11)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36421976

RESUMO

Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is a serious invasive pest in China. In this study, we determined whether exogenous jasmonic acid (JA) and ethylene (ET) treatments could induce resistance against F. occidentalis in faba bean plants. First, we investigated the effects of different concentrations of JA or ET alone on F. occidentalis and then assessed the effects of optimal concentrations of JA and ET combined. Our results showed that the optimal concertation of JA was 2 mmol/L and ET was 0.5 mmol/L. JA + ET mixture showed the greatest inhibitory effect in terms of oviposition and feeding. JA with ET was found to induce changes in the activities of lipoxygenase (LOX), allene oxide synthase (AOS), polyphenol oxidase (PPO), 1-aminocyclopropane 1-carboxylic acid synthase (ACS), and trypsin inhibitor (TI). This treatment also activated or inhibited the relative expression levels of LOX1, ACO2, ACS2, and AP2/ERF. Treatment of faba bean plants with JA and ET significantly prolonged F. occidentalis development and adult preoviposition period, significantly reduced per-female oviposition, and altered male longevity and offspring demographic parameters. These results indicate that JA with ET can induce defenses against the growth and development of F. occidentalis in faba bean plants.

2.
Insects ; 13(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36135483

RESUMO

Western flower thrips (Frankliniella occidentalis) pose a serious threat to the global vegetable and flower crop production. The regulatory mechanism for superoxide dismutase (SOD) in the feeding adaptation of F. occidentalis after host shifting remains unclear. In this study, the copper chaperone for SOD (CCS) and manganese SOD (MnSOD) genes in F. occidentalis were cloned, and their expression levels at different developmental stages was determined. The mRNA expression of FoCCS1 and FoMnSOD2 in F. occidentalis second-instar larvae and adult females of F1, F2, and F3 generations was analyzed after shifting the thrips to kidney bean and broad bean plants, respectively. The F2 and F3 second-instar larvae and F2 adult females showed significantly upregulated FoCCS1 mRNA expression after shifting to kidney bean plants. The F1 second-instar larvae and F2 adult females showed significantly upregulated FoCCS1 mRNA expression after shifting to broad bean plants. The RNA interference significantly downregulated the FoCCS1 mRNA expression levels and adult females showed significantly inhibited SOD activity after shifting to kidney bean and broad bean plants. F. occidentalis adult females subjected to RNA interference and released on kidney bean and broad bean leaves for rearing, respectively, significantly reduced the survival rate and fecundity. These findings suggest that FoCCS1 plays an active role in regulating the feeding adaptation ability of F. occidentalis after host shifting.

3.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142802

RESUMO

The western flower thrips, Frankliniella occidentalis Pergande, is an invasive pest that damages agricultural and horticultural crops. The induction of plant defenses and RNA interference (RNAi) technology are potent pest control strategies. This study investigated whether the anti-adaptive ability of F. occidentalis to jasmonic acid (JA)- and methyl jasmonate (MeJA)-induced defenses in kidney bean plants was attenuated after glutathione S-transferase (GST) gene knockdown. The expression of four GSTs in thrips fed JA- and MeJA-induced leaves was analyzed, and FoGSTd1 and FoGSTs1 were upregulated. Exogenous JA- and MeJA-induced defenses led to increases in defensive secondary metabolites (tannins, alkaloids, total phenols, flavonoids, and lignin) in leaves. Metabolome analysis indicated that the JA-induced treatment of leaves led to significant upregulation of defensive metabolites. The activity of GSTs increased in second-instar thrips larvae fed JA- and MeJA-induced leaves. Co-silencing with RNAi simultaneously knocked down FoGSTd1 and FoGSTs1 transcripts and GST activity, and the area damaged by second-instar larvae feeding on JA- and MeJA-induced leaves decreased by 62.22% and 55.24%, respectively. The pupation rate of second-instar larvae also decreased by 39.68% and 39.89%, respectively. Thus, RNAi downregulation of FoGSTd1 and FoGSTs1 reduced the anti-adaptive ability of F. occidentalis to JA- or MeJA-induced defenses in kidney bean plants.


Assuntos
Phaseolus , Tisanópteros , Acetatos , Animais , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Flavonoides/metabolismo , Flores/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Lignina/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Phaseolus/metabolismo , Fenóis/metabolismo , Interferência de RNA , Taninos/metabolismo , Tisanópteros/genética , Tisanópteros/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA