Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 20(6): 3424-3431, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31748035

RESUMO

The AgBrO3/few-layer g-C3N4 composite photocatalyst has been developed via an in-situ synthetic method. The structure, morphology, light response range, separation and migration efficiency of the photogenerated electron-hole pairs and element valence state of the as-obtained samples have been characterized. The tetracycline was used to discuss the photocatalytic activities of the samples. The photocatalytic degradation mechanism of the as-obtained composites was also researched. The analysis results show that the photocatalytic degradation property of the asobtained composite photocatalyst appears to the tendency of first increasing and then decreasing with increasing the amount of AgBrO3 under visible light illumination. When the mass ratio of AgBrO3 to g-C3N4 is 4:3, in 60 min, the photocatalytic degradation efficiency of the as-obtained composites reaches the maximum of 79%. It is 37% and 45% higher than that of pure AgBrO3 and g-C3N4, respectively. Moreover, the separation and migration efficiency of the photogenerated electron-hole pairs of the as-prepared composites are also enhanced. In addition, superoxide radicals and holes are the dominant active species during the photocatalytic degradation process.


Assuntos
Compostos de Nitrogênio , Tetraciclina , Catálise , Grafite , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...