Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 9(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33065969

RESUMO

Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes represent the most important disease resistance genes in plants. The genome sequence of kiwifruit (Actinidia chinensis) provides resources for the characterization of NBS-LRR genes and identification of new R-genes in kiwifruit. In the present study, we identified 100 NBS-LRR genes in the kiwifruit genome and they were grouped into six distinct classes based on their domain architecture. Of the 100 genes, 79 are truncated non-regular NBS-LRR genes. Except for 37 NBS-LRR genes with no location information, the remaining 63 genes are distributed unevenly across 18 kiwifruit chromosomes and 38.01% of them are present in clusters. Seventeen families of cis-acting elements were identified in the promoters of the NBS-LRR genes, including AP2, NAC, ERF and MYB. Pseudomonas syringae pv. actinidiae (pathogen of the kiwifruit bacterial canker) infection induced differential expressions of 16 detected NBS-LRR genes and three of them are involved in plant immunity responses. Our study provides insight of the NBS-LRR genes in kiwifruit and a resource for the identification of new R-genes in the fruit.

2.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32858853

RESUMO

Pecan is one of the most famous nut species in the world. The phenotype of mutants with albino leaves was found in the process of seeding pecan, providing ideal material for the study of the molecular mechanisms leading to the chlorina phenotype in plants. Both chlorophyll a and chlorophyll b contents in albino leaves (ALs) were significantly lower than those in green leaves (GLs). A total of 5171 differentially expression genes (DEGs) were identified in the comparison of ALs vs. GLs using high-throughput transcriptome sequencing; 2216 DEGs (42.85%) were upregulated and 2955 DEGs (57.15%) were downregulated. The expressions of genes related to chlorophyll biosynthesis (HEMA1, encoding glutamyl-tRNA reductase; ChlH, encoding Mg-protoporphyrin IX chelatase (Mg-chelatase) H subunit; CRD, encoding Mg-protoporphyrin IX monomethylester cyclase; POR, encoding protochlorophyllide reductase) in ALs were significantly lower than those in GLs. However, the expressions of genes related to chlorophyll degradation (PAO, encoding pheophorbide a oxygenase) in ALs were significantly higher than those in GLs, indicating that disturbance of chlorophyll a biosynthesis and intensification of chlorophyll degradation lead to the absence of chlorophyll in ALs of pecan. A total of 72 DEGs associated with photosynthesis pathway were identified in ALs compared to GLs, including photosystem I (15), photosystem II (19), cytochrome b6-f complex (3), photosynthetic electron transport (6), F-type ATPase (7), and photosynthesis-antenna proteins (22). Moreover, almost all the genes (68) mapped in the photosynthesis pathway showed decreased expression in ALs compared to GLs, declaring that the photosynthetic system embedded within the thylakoid membrane of chloroplast was disturbed in ALs of pecan. This study provides a theoretical basis for elucidating the molecular mechanism underlying the phenotype of chlorina seedlings of pecan.


Assuntos
Carya/química , Clorofila A/metabolismo , Clorofila/metabolismo , Perfilação da Expressão Gênica/métodos , Locos de Características Quantitativas , Carya/genética , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Fenótipo , Fotossíntese , Folhas de Planta/química , Folhas de Planta/genética , Proteínas de Plantas/genética , Análise de Sequência de RNA
3.
Int J Mol Sci ; 20(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857203

RESUMO

APETALA2/ethylene-responsive factor superfamily (AP2/ERF) is a transcription factor involved in abiotic stresses, for instance, cold, drought, and low oxygen. In this study, a novel ethylene-responsive transcription factor named AdRAP2.3 was isolated from Actinidia deliciosa 'Jinkui'. AdRAP2.3 transcription levels in other reproductive organs except for the pistil were higher than those in the vegetative organs (root, stem, and leaf) in kiwi fruit. Plant hormones (Salicylic acid (SA), Methyl-jasmonate acid (MeJA), 1-Aminocyclopropanecarboxylic Acid (ACC), Abscisic acid (ABA)), abiotic stresses (waterlogging, heat, 4 °C and NaCl) and biotic stress (Pseudomonas Syringae pv. Actinidiae, Psa) could induce the expression of AdRAP2.3 gene in kiwi fruit. Overexpression of the AdRAP2.3 gene conferred waterlogging stress tolerance in transgenic tobacco plants. When completely submerged, the survival rate, fresh weight, and dry weight of transgenic tobacco lines were significantly higher than those of wile type (WT). Upon the roots being submerged, transgenic tobacco lines grew aerial roots earlier. Overexpression of AdRAP2.3 in transgenic tobacco improved the pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) enzyme activities, and improved the expression levels of waterlogging mark genes NtPDC, NtADH, NtHB1, NtHB2, NtPCO1, and NtPCO2 in roots under waterlogging treatment. Overall, these results demonstrated that AdRAP2.3 might play an important role in resistance to waterlogging through regulation of PDC and ADH genes in kiwi fruit.


Assuntos
Actinidia/fisiologia , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Nicotiana/fisiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Actinidia/genética , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Genes de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Nicotiana/genética , Fatores de Transcrição/genética
4.
Int J Mol Sci ; 19(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149559

RESUMO

Mitogen activated protein kinase (MAPK) cascades are universal signal transduction modules that play crucial roles in various biotic and abiotic stresses, hormones, cell division, and developmental processes in plants. Mitogen activated protein kinase (MAPK/MPK), being a part of this cascade, performs an important function for further appropriate cellular responses. Although MAPKs have been investigated in several model plants, no systematic analysis has been conducted in kiwifruit (Actinidia chinensis). In the present study, we identified 18 putative MAPKs in the kiwifruit genome. This gene family was analyzed bioinformatically in terms of their chromosome locations, sequence alignment, gene structures, and phylogenetic and conserved motifs. All members possess fully canonical motif structures of MAPK. Phylogenetic analysis indicated that AcMAPKs could be classified into five subfamilies, and these gene motifs in the same group showed high similarity. Gene structure analysis demonstrated that the number of exons in AcMAPK genes ranged from 2 to 29, suggesting large variation among kiwifruit MAPK genes. The expression profiles of these AcMAPK genes were further investigated using quantitative real-time polymerase chain reaction (qRT-PCR), which demonstrated that AcMAPKs were induced or repressed by various biotic and abiotic stresses and hormone treatments, suggesting their potential roles in the biotic and abiotic stress response and various hormone signal transduction pathways in kiwifruit. The results of this study provide valuable insight into the putative physiological and biochemical functions of MAPK genes in kiwifruit.


Assuntos
Actinidia/genética , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Proteínas Quinases Ativadas por Mitógeno/genética , Família Multigênica , Actinidia/classificação , Actinidia/efeitos dos fármacos , Biologia Computacional/métodos , Sequência Conservada , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla/métodos , Motivos de Nucleotídeos , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Regiões Promotoras Genéticas , Estresse Fisiológico
5.
PLoS One ; 13(3): e0194835, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29579114

RESUMO

Ascorbic acid (AsA), chlorophyll and carotenoid contents and their associated gene expression patterns were analysed in Actinidia chinensis 'Hongyang' outer pericarp. The results showed chlorophyll degradation during fruit development and softening, exposed the yellow carotenoid pigments. LHCB1 and CLS1 gene expressions were decreased, while PPH2 and PPH3 gene expressions were increased, indicating that downregulation of chlorophyll biosynthesis and upregulation of its degradation, caused chlorophyll degradation. A decrease in the expression of the late carotenoid biosynthesis and maintenance genes (LCYB1, LCYE1, CYP1, CYP2, ZEP1, VDE1, VDE2, and NCED2) and degradation gene (CCD1), showed biosynthesis and degradation of carotenoid could be regulatory factors involved in fruit development. Most genes expression data of L-galactose and recycling pathway were agreement with the AsA concentrations in the fruit, suggesting these are the predominant pathways of AsA biosynthesis. GMP1, GME1 and GGP1 were identified as the key genes controlling AsA biosynthesis in 'Hongyang' outer pericarp.


Assuntos
Actinidia/metabolismo , Ácido Ascórbico/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Actinidia/crescimento & desenvolvimento , Regulação para Baixo , Frutas/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação para Cima
6.
Int J Mol Sci ; 19(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373527

RESUMO

Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has brought about a severe threat to the kiwifruit industry worldwide since its first outbreak in 2008. Studies on other pathovars of P. syringae are revealing the pathogenesis of these pathogens, but little about the mechanism of kiwifruit bacterial canker is known. In order to explore the species-specific interaction between Psa and kiwifruit, we analyzed the transcriptomic profile of kiwifruit infected by Psa. After 48 h, 8255 differentially expressed genes were identified, including those involved in metabolic process, secondary metabolites metabolism and plant response to stress. Genes related to biosynthesis of terpens were obviously regulated, indicating terpens may play roles in suppressing the growth of Psa. We identified 283 differentially expressed resistant genes, of which most U-box domain containing genes were obviously up regulated. Expression of genes involved in plant immunity was detected and some key genes showed differential expression. Our results suggest that Psa induced defense response of kiwifruit, including PAMP (pathogen/microbe-associated molecular patterns)-triggered immunity, effector-triggered immunity and hypersensitive response. Metabolic process was adjusted to adapt to these responses and production of secondary metabolites may be altered to suppress the growth of Psa.


Assuntos
Actinidia/genética , Resistência à Doença/genética , Pseudomonas syringae/patogenicidade , Transcriptoma , Actinidia/imunologia , Actinidia/microbiologia , Interações Hospedeiro-Patógeno , Terpenos/metabolismo
7.
Int J Mol Sci ; 18(11)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29120390

RESUMO

A previous report showed that both Pyruvatedecarboxylase (PDC) genes were significantly upregulated in kiwifruit after waterlogging treatment using Illumina sequencing technology, and that the kiwifruit AdPDC1 gene was required during waterlogging, but might not be required during other environmental stresses. Here, the function of another PDC gene, named AdPDC2, was analyzed. The expression of the AdPDC2 gene was determined using qRT-PCR, and the results showed that the expression levels of AdPDC2 in the reproductive organs were much higher than those in the nutritive organs. Waterlogging, NaCl, and heat could induce the expression of AdPDC2. Overexpression of kiwifruit AdPDC2 in transgenic Arabidopsis enhanced resistance to waterlogging and heat stresses in five-week-old seedlings, but could not enhance resistance to NaCl and mannitol stresses at the seed germination stage and in early seedlings. These results suggested that the kiwifruit AdPDC2 gene may play an important role in waterlogging resistance and heat stresses in kiwifruit.


Assuntos
Actinidia/genética , Inundações , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Proteínas de Plantas/genética , Piruvato Descarboxilase/genética , Termotolerância/genética , Actinidia/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Manitol , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Piruvato Descarboxilase/metabolismo , Salinidade , Plântula/genética , Plântula/fisiologia , Cloreto de Sódio , Água
8.
Mol Med Rep ; 12(2): 2622-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25954860

RESUMO

Clear-cell renal cell carcinoma (CCRCC) is the most frequent primary malignancy in the adult kidney. Most patients with advanced CCRCC have poor prognosis as CCRCC remains resistant to chemotherapy. The present study explored the possible mechanism underlying CCRCC resistance to chemotherapy and found that loss of PTEN in CCRCC may be involved. Knockdown of PTEN in the CCRCC cell line ACHN blocked etoposide-induced apoptosis and etoposide-impaired cell proliferation was also inhibited. It has been demonstrated that most chemotherapy drugs exert their anti-cancer effects via p53-mediated apoptosis, and in accordance, with this, the present study showed that treatment with etoposide significantly increased p53 levels. Silencing of PTEN in ACHN inhibited the Akt/HDM2 signaling cascade and depressed p53 expression, and the interaction between HDM2 and p53 was also enhanced. This was further verified in CCRCC tissue specimens from patients The results of the present study suggested that loss of PTEN, which deactivated Akt/HDM2 signaling followed by degradation of p53, may contribute to the development of etoposide resistance in CCRCC.


Assuntos
Carcinoma de Células Renais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Renais/genética , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteína Supressora de Tumor p53/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Etoposídeo/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , PTEN Fosfo-Hidrolase/deficiência , Proteólise , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...