Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 746
Filtrar
1.
ChemSusChem ; : e202400704, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860330

RESUMO

The biosynthesis of valuable plant-derived monoterpene (-)-menthol from readily available feedstocks (e.g., (-)-limonene) is of great significance because of the high market demand for this product. However, biotransforming (+)-pulegone into (-)-menthone, the (-)-menthol precursor, through (+)-pulegone reductase (PGR) catalysis is inefficient because of the poor protein expression or catalytic efficiency (kcat/Km) of plant origin PGRs. In this study, a novel bacterial PGR from Pseudomonas resinovorans (PrPGR) was identified, and the most successful variant, PrPGRM2-1 (A50V/G53W), was obtained, showing respective 20-fold and 204-fold improvements in specific activity and catalytic efficiency. PrPGRM2-1 was employed to bioreduce (+)-pulegone, resulting in 4.4-fold and 35-fold enhancements in (-)-menthone titers compared with the bioreductions catalyzed by wild-type (WT) PrPGR and MpPGR, respectively. Furthermore, a whole-cell biocatalyst containing PrPGRM2-1, MpMMR, and BstFDH was constructed and achieved the highest (-)-menthol titer reported to date without externally supplemented NADPH/NADP+. Overall, this study details an efficient PGR with high catalytic efficiency that possesses great potential for (-)-menthol biosynthesis.

2.
Biomacromolecules ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819927

RESUMO

The γ-cyclodextrin (γ-CD) metal-organic frameworks (CD-MOF-1) consist of γ-CD and potassium (K+) ions through coordinating an eight-coordinated K+ ion with two C5-linked oxygen and C6-linked hydroxyl (C5-O/C6-OH) groups in the primary faces of adjacent γ-CD units and two C2- and C3-linked hydroxyl (C2-OH/C3-OH) groups in the secondary faces. Herein, we found polysaccharide gels with only C2-OH/C3-OH or C5-O/C6-OH groups in pyranoid rings can form four-coordinated K+ ions and then coordinate γ-CD in a KOH solution for CD-MOF-1 growth. Exposure of C2-OH/C3-OH or C5-O/C6-OH groups in polysaccharide gels is important to form active four-coordinated K+ ions. Mechanism supporting this work is that four-coordinated K+ ion sites are first formed after coordinating C2-OH/C3-OH groups in pectin and then coordinating C5-O/C6-OH groups in the primary faces of γ-CD units. Alternatively, four-coordinated K+ ions with C5-O/C6-OH groups in chitosan can coordinate the C2-OH/C3-OH groups in the secondary faces of γ-CD units. Mechanism of CD-MOF-1 growing on pectin and chitosan gels through the proposed four-coordinated K+ ions is also universally applicable to other polysaccharide gels with similar C2-OH/C3-OH or C5-O/C6-OH groups such as alginate gel. Based on this mechanism, we developed pectin and chitosan gel-based CD-MOF-1 composites and exemplified applications of them in antibacterial and organic dye removal. To help future research and applications of this mechanism, we share our theoretical assumption for further investigations that any matrices with an ortho-hydroxyl carbon chain or ortho-hydroxyl ether structures may form four-coordinated K+ ions for CD-MOF-1 growth. The proposed mechanism will broaden the development of novel CD-MOF-1 composites in various fields.

3.
World J Clin Cases ; 12(13): 2218-2230, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38808352

RESUMO

BACKGROUND: The specific benefits of Yangxinshi tablet (YXST) in the treating chronic heart failure (CHF) remain uncertain. AIM: To systematically evaluate the efficacy and safety of YXST in the treatment of CHF. METHODS: Randomized controlled trials (RCTs) investigating YXST for CHF treatment were retrieved from eight public databases up to November 2023. Meta-analyses of the included clinical studies were conducted using Review Manager 5.3. RESULTS: Twenty RCTs and 1845 patients were included. The meta-analysis results showed that the YXST combination group, compared to the conventional drug group, significantly increased the clinical efficacy rate by 23% [relative risk (RR) = 1.23, 95%CI: 1.17-1.29], P < 0.00001), left ventricular ejection fraction by 6.69% [mean difference (MD) = 6.69, 95%CI: 4.42-8.95, P < 0.00001] and 6-min walk test by 49.82 m (MD = 49.82, 95%C: 38.84-60.80, P < 0.00001), and reduced N-terminal pro-B-type natriuretic peptide by 1.03 ng/L [standardized MD (SMD) = -1.03, 95%CI: -1.32 to -0.74, P < 0.00001], brain natriuretic peptide by 80.95 ng/L (MD = -80.95, 95%CI: -143.31 to -18.59, P = 0.01), left ventricular end-diastolic diameter by 3.92 mm (MD = -3.92, 95%CI: -5.06 to -2.78, P < 0.00001), and left ventricular end-systolic diameter by 4.34 mm (MD = -4.34, 95%CI: -6.22 to -2.47, P < 0.00001). Regarding safety, neither group reported any serious adverse events during treatment (RR = 0.54, 95%CI: 0.15-1.90, P = 0.33). In addition, Egger's test results indicated no significant publication bias (P = 0.557). CONCLUSION: YXST effectively improves clinical symptoms and cardiac function in patients with CHF while maintaining a favorable safety profile, suggesting its potential as a therapeutic strategy for CHF.

4.
Bioresour Bioprocess ; 11(1): 55, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780695

RESUMO

BACKGROUND: Dodecanedioic acid (DDA), a typical medium-chain dicarboxylic fatty acid with widespread applications, has a great synthetic value and a huge industrial market demand. Currently, a sustainable, eco-friendly and efficient process is desired for dodecanedioic acid production. RESULTS: Herein, a multi-enzymatic cascade was designed and constructed for the production of DDA from linoleic acid based on the lipoxygenase pathway in plants. The cascade is composed of lipoxygenase, hydroperoxide lyase, aldehyde dehydrogenase, and unidentified double-bond reductase in E. coli for the main cascade reactions, as well as NADH oxidase for cofactor recycling. The four component enzymes involved in the cascade were co-expressed in E. coli, together with the endogenous double-bond reductase of E. coli. After optimizing the reaction conditions of the rate-limiting step, 43.8 g L- 1 d- 1 of DDA was obtained by a whole-cell one-pot process starting from renewable linoleic acid. CONCLUSIONS: Through engineering of the reaction system and co-expressing the component enzymes, a sustainable and eco-friendly DDA biosynthesis route was set up in E. coli, which afforded the highest space time yield for DDA production among the current artificial multi-enzymatic routes derived from the LOX-pathway, and the productivity achieved here ranks the second highest among the current research progress in DDA biosynthesis.

5.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732143

RESUMO

This study explores low-intensity extracorporeal shock wave therapy (LiESWT)'s efficacy in alleviating detrusor hyperactivity with impaired contractility (DHIC) induced by ovarian hormone deficiency (OHD) in ovariectomized rats. The rats were categorized into the following four groups: sham group; OVX group, subjected to bilateral ovariectomy (OVX) for 12 months to induce OHD; OVX + SW4 group, underwent OHD for 12 months followed by 4 weeks of weekly LiESWT; and OVX + SW8 group, underwent OHD for 12 months followed by 8 weeks of weekly LiESWT. Cystometrogram studies and voiding behavior tracing were used to identify the symptoms of DHIC. Muscle strip contractility was evaluated through electrical-field, carbachol, ATP, and KCl stimulations. Western blot and immunofluorescence analyses were performed to assess the expressions of various markers related to bladder dysfunction. The OVX rats exhibited significant bladder deterioration and overactivity, alleviated by LiESWT. LiESWT modified transient receptor potential vanilloid (TRPV) channel expression, regulating calcium concentration and enhancing bladder capacity. It also elevated endoplasmic reticulum (ER) stress proteins, influencing ER-related Ca2+ channels and receptors to modulate detrusor muscle contractility. OHD after 12 months led to neuronal degeneration and reduced TRPV1 and TRPV4 channel activation. LiESWT demonstrated potential in enhancing angiogenic remodeling, neurogenesis, and receptor response, ameliorating DHIC via TRPV channels and cellular signaling in the OHD-induced DHIC rat model.


Assuntos
Modelos Animais de Doenças , Tratamento por Ondas de Choque Extracorpóreas , Contração Muscular , Canais de Cátion TRPV , Bexiga Urinária , Animais , Feminino , Ratos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Tratamento por Ondas de Choque Extracorpóreas/métodos , Bexiga Urinária/fisiopatologia , Bexiga Urinária/metabolismo , Bexiga Urinária Hiperativa/terapia , Bexiga Urinária Hiperativa/metabolismo , Bexiga Urinária Hiperativa/fisiopatologia , Bexiga Urinária Hiperativa/etiologia , Ovariectomia , Ratos Sprague-Dawley , Ovário/metabolismo
6.
Biochemistry ; 63(12): 1578-1587, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38803051

RESUMO

l-(+)-Tartaric acid plays important roles in various industries, including pharmaceuticals, foods, and chemicals. cis-Epoxysuccinate hydrolases (CESHs) are crucial for converting cis-epoxysuccinate to l-(+)-tartrate in the industrial production process. There is, however, a lack of detailed structural and mechanistic information on CESHs, limiting the discovery and engineering of these industrially relevant enzymes. In this study, we report the crystal structures of RoCESH and KoCESH-l-(+)-tartrate complex. These structures reveal the key amino acids of the active pocket and the catalytic triad residues and elucidate a dynamic catalytic process involving conformational changes of the active site. Leveraging the structural insights, we identified a robust BmCESH (550 ± 20 U·mg-1) with sustained catalytic activity even at a 3 M substrate concentration. After six batches of transformation, immobilized cells with overexpressed BmCESH maintained 69% of their initial activity, affording an overall productivity of 200 g/L/h. These results provide valuable insights into the development of high-efficiency CESHs and the optimization of biotransformation processes for industrial uses.


Assuntos
Biocatálise , Tartaratos , Tartaratos/metabolismo , Tartaratos/química , Domínio Catalítico , Cristalografia por Raios X , Hidrolases/química , Hidrolases/metabolismo , Hidrolases/genética , Modelos Moleculares , Conformação Proteica
7.
Bioresour Bioprocess ; 11(1): 50, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753083

RESUMO

Biosynthesis of paclitaxel (Taxol™) is a hot topic with extensive and durable interests for decades. However, it is severely hindered due to the very low titers of intermediates. In this study, Escherichia coli was employed to de novo synthesize a key intermediate of paclitaxel, taxadien-5α-yl-acetate (T5OAc). Plasmid-based pathway reconstruction and optimization were conducted for T5OAc production. The endogenous methylerythritol phosphate pathway was enhanced to increase the precursor supply. Three taxadien-5α-ol O-acetyltransferases were tested to obtain the best enzyme for the acetylation step. Metabolic burden was relieved to restore cell growth and promote production through optimizing the plasmid production system. In order to achieve metabolic balance, the biosynthesis pathway was regulated precisely by multivariate-modular metabolic engineering. Finally, in a 5-L bioreactor, the T5OAc titer was enhanced to reach 10.9 mg/L. This represents an approximately 272-fold increase in production compared to the original strain, marking the highest yield of T5OAc ever documented in E. coli, which is believed to be helpful for promoting the progress of paclitaxel biosynthesis.

8.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1361-1368, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621984

RESUMO

This study aims to explore the pathogenesis of myocardial ischaemia reperfusion injury(MIRI) based on oxidative stress-mediated programmed cell death and the mechanism and targets of Chaihu Sanshen Capsules in treating MIRI via the protein kinase Cß(PKCßⅡ)/NADPH oxidase 2(NOX2)/reactive oxygen species(ROS) signaling pathway. The rat model of MIRI was established by the ligation of the left anterior descending branch. Rats were randomized into 6 groups: sham group, model group, clinically equivalent-, high-dose Chaihu Sanshen Capsules groups, N-acetylcysteine group, and CGP53353 group. After drug administration for 7 consecutive days, the area of myocardial infarction in each group was measured. The pathological morphology of the myocardial tissue was observed by hematoxylin-eosin(HE) staining. The apoptosis in the myocardial tissue was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL). Enzyme-linked immunosorbent assay(ELISA) was employed to measure the le-vels of indicators of myocardial injury and oxidative stress. The level of ROS was detected by flow cytometry. The protein and mRNA levels of the related proteins in the myocardial tissue were determined by Western blot and real-time quantitative PCR(RT-qPCR), respectively. Compared with the sham group, the model group showed obvious myocardial infarction, myocardial structural disorders, interstitial edema and hemorrhage, presence of a large number of vacuoles, elevated levels of myocardial injury markers, myocardial apoptosis, ROS, and malondialdehyde(MDA), lowered superoxide dismutase(SOD) level, and up-regulated protein and mRNA le-vels of PKCßⅡ, NOX2, cysteinyl aspartate specific proteinase-3(caspase-3), and acyl-CoA synthetase long-chain family member 4(ACSL4) in the myocardial tissue. Compared with the model group, Chaihu Sanshen Capsules reduced the area of myocardial infarction, alleviated the pathological changes in the myocardial tissue, lowered the levels of myocardial injury and oxidative stress indicators and apoptosis, and down-regulated the mRNA and protein levels of PKCßⅡ, NOX2, caspase-3, and ACSL4 in the myocardial tissue. Chaihu Sanshen Capsules can inhibit oxidative stress and programmed cell death(apoptosis, ferroptosis) by regulating the PKCßⅡ/NOX2/ROS signaling pathway, thus mitigating myocardial ischemia reperfusion injury.


Assuntos
Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/genética , Espécies Reativas de Oxigênio , Ratos Sprague-Dawley , Caspase 3/metabolismo , Transdução de Sinais , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , RNA Mensageiro , Apoptose
9.
Ther Adv Infect Dis ; 11: 20499361241248058, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681967

RESUMO

Background: Urosepsis is a common disease in urology, which is characterized by high treatment costs and high mortality. In the treatment of sepsis, anti-infection therapy is the most important means. However, the effect of empirical anti-infection therapy is often not ideal. Therefore, it is necessary to continuously monitor the prevalence of bacterial isolates in the blood culture of patients with urinary sepsis and their sensitivity to antibacterial drugs. This is of great significance to improve the efficacy of empirical antibiotic therapy for urosepsis. Objective: To elucidate the landscape of prevailing bacterial profiles and their antimicrobial susceptibilities in urosepsis cases, and to furnish robust clinical evidence to underpin the timely initiation of empirical antibiotic treatment. Methods: Collect the basic information and blood culture results of patients with urosepsis hospitalized from 2017 to 2020. Retrospective analysis of bacterial species and antimicrobial susceptibility in urosepsis and changes over 4 years. Results: Gram-negative bacteria (178 isolates, 75.11%) constituted the main pathogens causing urosepsis, followed by Gram-positive bacteria (46 isolates, 19.41%) and fungus (13 isolates, 5.48%). The sensitivity of ertapenem, meropenem, amikacin, and imipenem to Gram-negative bacteria all exceeded 85%. The sensitivity rates of levofloxacin, gentamicin, and ciprofloxacin are decreasing every year (p < 0.05). Tigecycline, vancomycin, and linezolid exhibited excellent sensitivity against Gram-positive bacteria. Among fungi, fluconazole demonstrated universal sensitivity, while itraconazole-resistant isolates have been found, and amphotericin B is still effective. Conclusion: Analysis of blood culture results of patients more accurately reflected the etiology of urosepsis, mainly Escherichia coli, Enterococcus, and Klebsiella pneumoniae. If there are no definitive blood culture results, empiric treatment of urosepsis should not include fluoroquinolone antibiotics. Cefepime, cefoxitin, and ceftazidime are the most sensitive antibiotics to Gram-negative bacteria besides carbapenem antibiotics. In addition, the current situation regarding extended-spectrum ß-lactamase-producing bacteria and carbapenem-resistant Enterobacteriaceae bacteria resistance is extremely concerning with limited therapeutic options available. Strengthening antibiotic management practices and exploring novel antibacterial agents can help mitigate this issue.

10.
J Agric Food Chem ; 72(17): 9984-9993, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635942

RESUMO

Squalene is a high-value antioxidant with many commercial applications. The use of microbial cell factories to produce squalene as an alternative to plant and animal extracts could meet increasing market demand. Yarrowia lipolytica is an excellent host for squalene production due to its high levels of acetyl-CoA and a hydrophobic environment. However, the need for precise and complicated gene editing has hindered the industrialization of this strain. Herein, the rapid construction of a strain with high squalene production was achieved by enhancing the homologous recombination efficiency in Y. lipolytica. First, remodeling of the homologous recombination efficiency resulted in a 10-fold increase in the homologous recombination rate. Next, the whole mevalonate pathway was integrated into the chromosome to enhance squalene production. Then, a higher level of squalene accumulation was achieved by increasing the level of acetyl coenzyme A and regulating the downstream steroid synthesis pathway. Finally, the squalene production reached 35 g/L after optimizing the fermentation conditions and performing a fed-batch culture in a 5 L jar fermenter. This is the highest squalene production ever reported to date by de novo biosynthesis without adding any inhibitors, paving a new path toward the industrial production of squalene and its downstream products.


Assuntos
Recombinação Homóloga , Engenharia Metabólica , Esqualeno , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Esqualeno/metabolismo , Fermentação , Ácido Mevalônico/metabolismo
11.
Angew Chem Int Ed Engl ; 63(25): e202401235, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38623716

RESUMO

Halide methyltransferases (HMTs) provide an effective way to regenerate S-adenosyl methionine (SAM) from S-adenosyl homocysteine and reactive electrophiles, such as methyl iodide (MeI) and methyl toluene sulfonate (MeOTs). As compared with MeI, the cost-effective unnatural substrate MeOTs can be accessed directly from cheap and abundant alcohols, but shows only limited reactivity in SAM production. In this study, we developed a dynamic cross-correlation network analysis (DCCNA) strategy for quickly identifying hot spots influencing the catalytic efficiency of the enzyme, and applied it to the evolution of HMT from Paraburkholderia xenovorans. Finally, the optimal mutant, M4 (V55T/C125S/L127T/L129P), exhibited remarkable improvement, with a specific activity of 4.08 U/mg towards MeOTs, representing an 82-fold increase as compared to the wild-type (WT) enzyme. Notably, M4 also demonstrated a positive impact on the catalytic ability with other methyl donors. The structural mechanism behind the enhanced enzyme activity was uncovered by molecular dynamics simulations. Our work not only contributes a promising biocatalyst for the regeneration of SAM, but also offers a strategy for efficient enzyme engineering.


Assuntos
Metiltransferases , Metiltransferases/metabolismo , Metiltransferases/química , Engenharia de Proteínas , Simulação de Dinâmica Molecular
12.
J Agric Food Chem ; 72(12): 6651-6659, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501756

RESUMO

Deoxynivalenol (DON) is a secondary metabolite of fungi that is harmful to humans and animals. This study examined the protective effects of natural substances, including resveratrol, quercetin, vitamin E, vitamin C, and microbe-derived antioxidants (MA), on both human gastric mucosal cells (GES-1) and pig small intestinal epithelial cells (IPEC-1) when induced by DON. Cells were incubated with active substances for 3 h and then exposed to DON for 24 h. The oxidative stress index, cell cycle, and apoptosis were measured. As compared to cells treated only with DON, pretreatment with active substances improved the balance of the redox status in cells caused by DON. Specifically, quercetin, vitamin E, vitamin C, and MA showed the potential to alleviate the G2 phase cell cycle arrest effect that was induced by DON in both kinds of cells. It was observed that vitamin E and vitamin C can alleviate DON-induced apoptosis and the G2 phase cycle arrest effect mediated via the ATM-Chk 2-Cdc 25C and ATM-P53 signaling pathways in GES-1 cells. In IPEC-1 cells, vitamin C and MA can alleviate both DON-induced apoptosis and the G2 phase cycle arrest effect via the ATM-Chk 2-Cdc 25C signaling pathway. Different bioactive substances utilize different protective mechanisms against DON in interacting with different cells. The proper addition of vitamin E and vitamin C to food can neutralize the toxic effect of DON, while the addition of vitamin C and MA to animal feed can reduce the harm DON does to animals.


Assuntos
Apoptose , Quercetina , Tricotecenos , Humanos , Animais , Suínos , Quercetina/farmacologia , Linhagem Celular , Antioxidantes/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Ácido Ascórbico/farmacologia , Vitamina E , Dano ao DNA
13.
ChemSusChem ; 17(6): e202400204, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38369946

RESUMO

Invited for this issue's cover is the group of Huilei Yu at the East China University of Science and Technology. The image shows a sustainable biosynthesis route to nylon monomers from bio-based substrate α, ω-dicarboxylic acids. The Research Article itself is available at 10.1002/cssc.202301477.


Assuntos
Diaminas , Ácidos Graxos , Aminoácidos , China
14.
Biotechnol Bioeng ; 121(3): 971-979, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088450

RESUMO

The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is a highly distinguished expression platform for the excellent synthesis of various heterologous proteins in recent years. With the advantages of high-density fermentation, P. pastoris can produce gram amounts of recombinant proteins. While not every protein of interest can be expressed to such high titers, such as Baeyer-Villiger monooxygenase (BVMO) (AcPSMO) which is responsible for pyrazole sulfide asymmetric oxidation. In this work, an excellent yeast expression system was established to facilitate efficient AcPSMO expression, which exhibited 9.5-fold enhanced secretion. Subsequently, an ultrahigh throughput screening method based on fluorescence-activated cell sorting by fusing super folder green fluorescent protein (sfGFP) in the C-terminal of AcPSMO was developed, and directed evolution was performed. The protein expression level of the superior mutant AcPSMOP1 (S58T/T252P/E336N/H456D) reached 84.6 mg/L at 100 mL shaking flask, which was 4.7 times higher than the levels obtained with the wild-type. Finally, the optimized chassis cells were used for high-density fermentation on a 5-L scale, and AcPSMOP1 protein yield of 3.4 g/L was achieved, representing approximately 85% of the total protein secreted. By directly employing the pH-adjusted supernatant as a biocatalyst, 20 g/L pyrmetazole sulfide was completely transformed into the corresponding (S)-sulfoxide, with a 78.8% isolated yield. This work confers dramatic benefits for efficient secretion of other BVMOs in P. pastoris.


Assuntos
Oxigenases de Função Mista , Pichia , Saccharomycetales , Oxigenases de Função Mista/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Sulfóxidos/metabolismo , Sulfetos/metabolismo
15.
ChemSusChem ; 17(6): e202301477, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38117609

RESUMO

Aliphatic ω-amino fatty acids (ω-AFAs) and α,ω-diamines (α,ω-DMs) are essential monomers for the production of nylons. Development of a sustainable biosynthesis route for ω-AFAs and α,ω-DMs is crucial in addressing the challenges posed by climate change. Herein, we constructed an unprecedented thermodynamically favorable multi-enzyme cascade (TherFavMEC) for the efficient sustainable biosynthesis of ω-AFAs and α,ω-DMs from cheap α,ω-dicarboxylic acids (α,ω-DAs). This TherFavMEC was developed by incorporating bioretrosynthesis analysis tools, reaction Gibbs free energy calculations, thermodynamic equilibrium shift strategies and cofactor (NADPH&ATP) regeneration systems. The molar yield of 6-aminohexanoic acid (6-ACA) from adipic acid (AA) was 92.3 %, while the molar yield from 6-ACA to 1,6-hexanediamine (1,6-HMD) was 96.1 %, which were significantly higher than those of previously reported routes. Furthermore, the biosynthesis of ω-AFAs and α,ω-DMs from 20.0 mM α,ω-DAs (C6-C9) was also performed, giving 11.2 mM 1,6-HMD (56.0 % yield), 14.8 mM 1,7-heptanediamine (74.0 % yield), 17.4 mM 1,8-octanediamine (87.0 % yield), and 19.7 mM 1,9-nonanediamine (98.5 % yield), respectively. The titers of 1,9-nonanediamine, 1,8-octanediamine, 1,7-heptanediamine and 1,6-HMD were improved by 328-fold, 1740-fold, 87-fold and 3.8-fold compared to previous work. Therefore, this work holds great potential for the bioproduction of ω-AFAs and α,ω-DMs.


Assuntos
Aminoácidos , Diaminas , Ácidos Dicarboxílicos , Ácidos Graxos
16.
Acta Pharmaceutica Sinica ; (12): 313-321, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1016646

RESUMO

Sesquiterpenes are natural terpenoids with 15 carbon atoms in the basic skeleton, which mainly exist in plant volatile oil and have important physiological and medicinal value. Cytochrome P450 (CYP450) is a kind of monooxygenase encoded by supergene family, which is one of the largest gene families in plants. It is involved in the synthesis and metabolism of terpenoids, alkaloids and other secondary metabolites. In the process of terpene biosynthesis, CYP450 participates in the post-modification stage of terpenes by introducing functional groups such as hydroxyl, carboxyl and carbonyl, which plays an important role in enriching the diversity of terpenes. The CYP450 enzymes involved in sesquiterpene synthesis and their substrate catalytic specificity mechanisms have been partially investigated. In this paper, the biosynthetic pathway of plant sesquiterpenes, the structure and classification of CYP450 enzymes were briefly introduced, and the CYP450 enzymes involved in sesquiterpene biosynthesis were summarized, in order to provide a reference for intensive study of the role of CYP450 enzymes in the synthesis of sesquiterpenoids.

17.
Plant Dis ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037199

RESUMO

Artemisia capillaris (Asteraceae) is an annual herb found in ˃10 provinces in China. It is cultivated on ˃670 ha, with annual production around 2,500 tons. Its shoot is used in traditional Chinese medicine (Liu et al. 2021). From April to May 2023, Sclerotinia rot symptoms were seen at the Institute of Medicinal Plant Development (40.04°N, 116.28°E), Beijing, China. Disease incidence was up to 10% in the field through investigation of 300 plants. Initial symptoms were irregular tan-brown lesions (0.5 to 5.0 mm) that expended to circumferential necrosis on the roots and basal stem, aerial mycelia and sclerotia were developed on them. The leaves and stem tips were withered and droopy in severe cases. Twelve symptomatic primary roots of 12 plants from two sites were cut into 5 × 5 mm pieces, surface sterilized with 75% ethanol for 30 s and 5% NaClO for 60 s, rinsed with distilled water for three times, dried with sterile filter paper, put on potato dextrose agar (PDA), and incubated at 25°C in the dark for 2 days. Two Sclerotinia-like isolates were obtained using the hyphaltip method. White aerial mycelia were sparse and appressed for isolate YC1-3 and dense for isolate YC1-7. After incubated at 25°C in the dark for 15 days, 10 to 25 sclerotia were developed near the colony margin. Sclerotia of isolate YC1-3 were 1.0 to 3.9 × 1.2 to 4.5 (mean 1.8 × 2.2) mm (n = 60), ovoid or arc-shaped. Sclerotia of isolate YC1-7 were 1.5 to 3.4 × 2.7 to 9.2 (mean 2.3 × 4.3) mm (n = 60), ovoid, dumbbell shaped or curved. The isolates were identified as Sclerotinia sclerotiorum based on morphology (Maas 1998). To further identify the pathogens, molecular identification was performed with isolates YC1-3 and YC1-7. DNA of the two isolates were extracted by the cetyltrimethylammonium bromide (CTAB) method. Polymerase chain reaction was performed with primers ITS1/ITS4 for the internal transcribed spacer (ITS) region (Choi et al. 2020; White et al. 1990) and primers G3PDHfor/G3PDHrev for the glyceraldehyde 3-phosphate dehydrogenase (G3PDH) gene (Garfinkel. 2021). BLAST search analysis revealed that the ITS sequence (GenBank OR229758 and OR229762) was ≥99% similar to S. sclerotiorum (MN099281, MZ379265, KX781301, etc.), and the G3PDH sequence (OR778388 and OR761975) was too (MZ493894, JQ036048, OQ790148, etc.). Phylogenetic trees were computed with ITS and G3PDH sequences using the Maximum Likelihood in MEGA 11. Nine two-month-old seedlings of A. capillaris were used to test pathogenicity. The epidermis layer of each primary root was slightly wounded (2 × 2 mm, 1 mm deep) using a sterile dissecting blade. Three plants were inoculated with mycelial plugs (5 mm in diameter) of YC1-3 and YC1-7 that cultured on PDA for 7 days. Control plants were inoculated with sterile PDA plugs. All seedlings were then incubated at 25oC and 90% relative humidity. After isolate YC1-7 inoculation 3 days and isolate YC1-3 inoculation 5 days, inoculated roots had symptoms like those in the field, controls had no symptoms. S. sclerotiorum was consistently re-isolated from diseased roots, fulfilling Koch's postulates. Diseases caused by S. sclerotiorum have been reported threatens several important economical crops (Marin and Peres 2020; Guan et al. 2022). To our knowledge, this is the first report of S. sclerotiorum causes Sclerotinia rot on A. capillaris. To avoid of significant economic losses, it is urgent to establish an effective disease-management strategy.

18.
Toxics ; 11(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38133390

RESUMO

Titanium dioxide is a compound that is used in the food, cosmetic, and paint industries; however, it is still toxic to humans and the environment. This study determined the toxicities of titanium dioxide nanoparticles (TiO2 NPs) in a Caenorhabditis elegans (C. elegans) model. The effects of commercially available (C-TiO2) and synthetically (S-TiO2) prepared TiO2 NP solutions on lethality, lifespan, growth, reproduction, locomotion, and gene expression were studied in C. elegans. Exposure to TiO2 NPs (0.0, 0.01, 0.1, 1.0, and 10 mg/L) did not result in any change to the survival rate or body length of the nematodes, regardless of the concentration. However, there was a decrease in the reproduction (brood size) and locomotion (body bending and head thrashing) of the nematodes as the TiO2 NP concentration increased. The longevity of the nematodes was shortened following TiO2 NP exposure. The gene expression of sod-1, sod-3, ctl-1, ctl-2, cyp35A2, mlt-1, and mlt-2 in the nematodes showed that there was an overexpression of all genes when the worms were exposed to 1 mg/L C-TiO2 or 10 mg/L S-TiO2. It was therefore concluded that compared with S-TiO2, C-TiO2 possibly causes more toxicity or genotoxicity in the C. elegans model.

19.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5623-5631, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114155

RESUMO

This study investigated the effects of Xuefu Zhuyu Decoction on myocardial metabolites in a rat model of coronary heart disease with heart blood stasis syndrome and explored the therapeutic mechanism of blood circulation-promoting and blood stasis-removing therapy. SD rats were randomly divided into a sham operation group, a model group, a Xuefu Zhuyu Decoction group(14.04 g·kg~(-1)), and a trimetazidine group(5.4 mg·kg~(-1)). The sham operation group underwent thread insertion without ligation, while the other groups underwent coronary artery left anterior descending branch ligation to induce a model of coronary heart disease with heart blood stasis syndrome. Three days after modeling, drug intervention was performed, and samples were taken after 14 days of intervention. General conditions were observed, and electrocardiogram and cardiac ultrasound indices were measured. Hematoxylin-eosin(HE) staining and Masson staining were used to observe tissue pathological morphology. The enzyme linked immunosorbent assay(ELISA) was used to measure the levels of triglyceride(TG) and total cholesterol(TC) in the serum. Ultra high performance liquid chromatography-quantitative exactive-mass spectrometry(UHPLC-QE-MS) technology was used to screen differential metabolites in myocardial tissue and conduct metabolic pathway enrichment analysis. The results showed that Xuefu Zhuyu Decoction significantly improved the general condition of the model rats, reduced heart rate and ST segment elevation in the electrocardiogram, increased left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), and decreased left ventricular internal diameter in diastole(LVIDd) and left ventricular internal diameter in systole(LVIDs). HE staining and Masson staining showed that Xuefu Zhuyu Decoction effectively alleviated myocardial tissue structural disorders, inflammatory cell infiltration, and collagen fiber deposition in the model rats. ELISA results showed that Xuefu Zhuyu Decoction effectively regulated serum TG and TC levels in the model rats. There were significant differences in the metabolic phenotypes of myocardial samples in each group. Fourteen differential metabolites were identified in the Xuefu Zhuyu Decoction group, involving five metabolic pathways, including arginine and proline metabolism, glycerophospholipid metabolism, aminoacyl-tRNA biosynthesis, ether lipid metabolism, and alanine, aspartate, and glutamate metabolism. Xuefu Zhuyu Decoction improved cardiac function and myocardial structural damage in the rat model of coronary heart disease with heart blood stasis syndrome, and its biological mechanism involved the regulation of lipid metabolism, choline metabolism, amino acid metabolism, energy metabolism, and protein synthesis pathways.


Assuntos
Doença das Coronárias , Função Ventricular Esquerda , Ratos , Animais , Volume Sistólico , Ratos Sprague-Dawley , Doença das Coronárias/tratamento farmacológico , Metabolômica
20.
Angew Chem Int Ed Engl ; 62(52): e202315659, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37962519

RESUMO

The diterpene synthase AlTS was identified from Aspergillus luchuensis. AlTS catalyses the formation of the diterpene hydrocarbon spiroluchuene A, which exhibits a novel skeleton characterised by a spirocyclic ring system. The cyclisation mechanism towards this compound was elucidated through isotopic labelling experiments in conjunction with DFT calculations and metadynamic simulations. The biosynthetic intermediate luchudiene, besides the derivative spiroluchuene B, was captured from an enzyme variant obtained through site-directed mutagenesis. With its 10-membered ring luchudiene is structurally related to germacrenes and can undergo a Cope rearrangement to luchuelemene.


Assuntos
Diterpenos , Aspergillus/genética , Ciclização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...