Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 41(32): 4700-4709, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37353454

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is one of the most prevalent pathogens of bacterial keratitis. Bacterial keratitis is a major cause of blindness worldwide. The rising incidence of multidrug resistance of P. aeruginosa precludes treatment with conventional antibiotics. Herein, we evaluated the protective efficiency and explored the possible underlying mechanism of an X-ray inactivated vaccine (XPa) using a murine P. aeruginosa keratitis model. Mice immunized with XPa exhibit reduced corneal bacterial loads and pathology scores. XPa vaccination induced corneal macrophage polarization toward M2, averting an excessive inflammatory reaction. Furthermore, histological observations indicated that XPa vaccination suppressed corneal fibroblast activation and prevented irreversible visual impairment. The potency of XPa against keratitis highlights its potential utility as an effective and promising vaccine candidate for P. aeruginosa.


Assuntos
Infecções Oculares Bacterianas , Ceratite , Infecções por Pseudomonas , Animais , Camundongos , Pseudomonas aeruginosa , Raios X , Vacinas de Produtos Inativados/uso terapêutico , Ceratite/prevenção & controle , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Córnea/microbiologia , Córnea/patologia , Infecções Oculares Bacterianas/microbiologia , Infecções Oculares Bacterianas/patologia , Infecções Oculares Bacterianas/prevenção & controle , Infecções por Pseudomonas/prevenção & controle , Camundongos Endogâmicos C57BL
2.
Signal Transduct Target Ther ; 6(1): 353, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34593766

RESUMO

Pseudomonas aeruginosa infection continues to be a major threat to global public health, and new safe and efficacious vaccines are needed for prevention of infections caused by P. aeruginosa. X-ray irradiation has been used to prepare whole-cell inactivated vaccines against P. aeruginosa infection. However, the immunological mechanisms of X-ray-inactivated vaccines are still unclear and require further investigation. Our previous study found that an X-ray-inactivated whole-cell vaccine could provide protection against P. aeruginosa by boosting T cells. The aim of the present study was to further explore the immunological mechanisms of the vaccine. Herein, P. aeruginosa PAO1, a widely used laboratory strain, was utilized to prepare the vaccine, and we found nucleic acids and 8-hydroxyguanosine in the supernatant of X-ray-inactivated PAO1 (XPa). By detecting CD86, CD80, and MHCII expression, we found that XPa fostered dentritic cell (DC) maturation by detecting. XPa stimulated the cGAS-STING pathway as well as Toll-like receptors in DCs in vitro, and DC finally underwent apoptosis and pyroptosis after XPa stimulation. In addition, DC stimulated by XPa induced CD8+ T-cell proliferation in vitro and generated immunologic memory in vivo. Moreover, XPa vaccination induced both Th1 and Th2 cytokine responses in mice and reduced the level of inflammatory factors during infection. XPa protected mice in pneumonia models from infection with PAO1 or multidrug-resistant clinical isolate W9. Chronic obstructive pulmonary disease (COPD) mice immunized with XPa could resist PAO1 infection. Therefore, a new mechanism of an X-ray-inactivated whole-cell vaccine against P. aeruginosa infection was discovered in this study.


Assuntos
Proteínas de Membrana/imunologia , Nucleotidiltransferases/imunologia , Infecções por Pseudomonas/imunologia , Vacinas contra Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Transdução de Sinais/imunologia , Animais , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Nucleotidiltransferases/genética , Infecções por Pseudomonas/genética , Vacinas contra Pseudomonas/farmacologia , Células RAW 264.7 , Transdução de Sinais/genética
4.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32718961

RESUMO

This study aimed to evaluate the antimicrobial activity of the novel monosulfactam 0073 against multidrug-resistant Gram-negative bacteria in vitro and in vivo and to characterize the mechanisms underlying 0073 activity. The in vitro activities of 0073, aztreonam, and the combination with avibactam were assessed by MIC and time-kill assays. The safety of 0073 was evaluated using 3-(4,5-dimethylthizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and acute toxicity assays. Murine thigh infection and pneumonia models were employed to define in vivo efficacy. A penicillin-binding protein (PBP) competition assay and confocal microscopy were conducted. The inhibitory action of 0073 against ß-lactamases was evaluated by the half-maximal inhibitory concentration (IC50), and resistance development was evaluated via serial passage. The monosulfactam 0073 showed promising antimicrobial activity against Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii isolates producing metallo-ß-lactamases (MBLs) and serine ß-lactamases. In preliminary experiments, compound 0073 exhibited safety both in vitro and in vivo In the murine thigh infection model and the pneumonia models in which infection was induced by P. aeruginosa and Klebsiella pneumoniae, 0073 significantly reduced the bacterial burden. Compound 0073 targeted several PBPs and exerted inhibitory effects against some serine ß-lactamases. Finally, 0073 showed a reduced propensity for resistance selection compared with that of aztreonam. The novel monosulfactam 0073 exhibited increased activity against ß-lactamase-producing Gram-negative organisms compared with the activity of aztreonam and showed good safety profiles both in vitro and in vivo The underlying mechanisms may be attributed to the affinity of 0073 for several PBPs and its inhibitory activity against some serine ß-lactamases. These data indicate that 0073 represents a potential treatment for infections caused by ß-lactamase-producing multidrug-resistant bacteria.


Assuntos
Antibacterianos , Compostos Azabicíclicos , beta-Lactamases/farmacologia , Animais , Antibacterianos/farmacologia , Aztreonam , Enterobacteriaceae , Camundongos , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases
5.
Curr Microbiol ; 77(9): 2104-2110, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32468182

RESUMO

In this study, the secondary metabolites of a lichen-derived actinomycete strain Amycolatopsis sp. YIM 130687 were investigated intensively by using three different media (4#, 302#, and 312#) for fermentation. A total of 21 compounds were isolated from the fermented extraction of the strain. The structures of all compounds were identified by the examination of HRESIMS and NMR spectra. Compounds 1-3, 5, 6, 21 were only found in the cultivation on 302# medium, while compounds 4, 9-11 were only obtained when the strain was cultured on 312# medium. On the other hand, compounds 7, 8, and 20 were only isolated from the fermentation product on 4# medium. The antimicrobial activity test showed that compound 9 had significant inhibitory effects on bacterial pathogens of Staphylococcus aureus and MRSA with the MICs of 2 µg/ml and fungal pathogens of Botrytis cinerea and Fusarium graminearum with the MICs of 1 µg/ml.


Assuntos
Líquens , Amycolatopsis , Botrytis , Fusarium , Testes de Sensibilidade Microbiana
6.
Front Microbiol ; 11: 558233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384665

RESUMO

Ionizing irradiation kills pathogens by destroying nucleic acids without protein structure destruction. However, how pathogens respond to irradiation stress has not yet been fully elucidated. Here, we observed that Pseudomonas aeruginosa PAO1 could release nucleic acids into the extracellular environment under X-ray irradiation. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray irradiation was observed to induce outer membrane vesicle (OMV) formation in P. aeruginosa PAO1. The size distribution of the OMVs of the irradiated PAO1 was similar to that of the OMVs of the non-irradiated PAO1 according to nanoparticle tracking analysis (NTA). The pyocin-related proteins are involved in OMV production in P. aeruginosa PAO1 under X-ray irradiation conditions, and that this is regulated by the key SOS gene recA. The OMV production was significantly impaired in the irradiated PAO1 Δlys mutant, suggesting that Lys endolysin is associated with OMV production in P. aeruginosa PAO1 upon irradiation stress. Meanwhile, no significant difference in OMV production was observed between PAO1 lacking the pqsR, lasR, or rhlR genes and the parent strain, demonstrating that the irradiation-induced OMV biosynthesis of P. aeruginosa was independent of the Pseudomonas quinolone signal (PQS).

7.
J Agric Food Chem ; 66(5): 1140-1146, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29334729

RESUMO

Seven new polyoxygenated cyclohexenoids, namely, phomopoxides A-G (1-7), were isolated from the fermentation broth extract of an endophytic fungal strain Phomopsis sp. YE3250 from the medicinal plant Paeonia delavayi Franch. The structures of these compounds were established by spectroscopic interpretation. The absolute configurations of compounds 1 and 4 were confirmed by X-ray crystallographic analysis and chemical derivative approach. All isolated compounds showed weak cytotoxic activities toward three human tumor cell lines (Hela, MCF-7, and NCI-H460) and weak antifungal activities against five pathogenic fungi (Candida albicans, Aspergillus niger, Pyricularia oryzae, Fusarium avenaceum, and Hormodendrum compactum). In addition, compounds 1-7 showed a promising α-glycosidase inhibitory activity with IC50 values of 1.47, 1.55, 1.83, 2.76, 2.88, 3.16, and 2.94 mM, respectively, as compared with a positive control of acarbose (IC50 = 1.22 mM).


Assuntos
Ascomicetos/metabolismo , Cicloexanos/farmacologia , Inibidores Enzimáticos , Glicosídeo Hidrolases/antagonistas & inibidores , Paeonia/microbiologia , Antifúngicos , Antineoplásicos , Linhagem Celular Tumoral , Cicloexanos/química , Endófitos/metabolismo , Células HeLa , Humanos , Células MCF-7 , Oxigênio/química , Plantas Medicinais/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...