Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542283

RESUMO

The global expansion of rapeseed seed quality has been focused on maintaining glucosinolate (GSL) and erucic acid (EA) contents. However, the influence of seed GSL and EA contents on the germination process under drought stress remains poorly understood. Herein, 114 rapeseed accessions were divided into four groups based on GSL and EA contents to investigate their performance during seed imbibition under drought stress. Our results revealed significant variations in seed germination-related traits, particularly with higher GSL and EA, which exhibited higher germination % (G%) and lower mean germination time (MGT) under drought stress conditions. Moreover, osmoregulation, enzymatic system and hormonal regulation were improved in high GSL and high EA (HGHE) versus low GSL and low EA (LGLE) seeds, indicating the essential protective role of GSL and EA during the germination process in response to drought stress. The transcriptional regulation mechanism for coordinating GSL-EA-related pathways in response to drought stress during seed imbibition was found to involve the differential expression of sugar metabolism-, antioxidant-, and hormone-related genes with higher enrichment in HGHE compared to LGLE seeds. GO enrichment analysis showed higher variations in transcription regulator activity and DNA-binding transcription factors, as well as ATP and microtubule motor activity in GSL-EA-related pathways. Furthermore, KEGG analysis identified cellular processes, environmental information processing, and metabolism categories, with varied gene participation between GSL, EA and GSL-EA-related pathways. For further clarification, QY7 (LGLE) seeds were primed with different concentrations of GSL and EA under drought stress conditions. The results showed that 200 µmol/L of GSL and 400 µmol/L of EA significantly improved G%, MGT, and seedling fresh weight, besides regulating stress and fatty acid responsive genes during the seed germination process under drought stress conditions. Conclusively, exogenous application of GSL and EA is considered a promising method for enhancing the drought tolerance of LGLE seeds. Furthermore, the current investigation could provide a theoretical basis of GSL and EA roles and their underlying mechanisms in stress tolerance during the germination process.


Assuntos
Brassica napus , Brassica rapa , Ácidos Erúcicos , Germinação/genética , Brassica napus/genética , Glucosinolatos/metabolismo , Secas , Sementes/genética , Sementes/metabolismo , Brassica rapa/genética , Perfilação da Expressão Gênica
2.
Front Plant Sci ; 14: 1269200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078104

RESUMO

Introduction: The TGA transcription factors, plays a crucial role in regulating gene expression. In cultivated peanut (Arachis hypogaea), which faces abiotic stress challenges, understanding the role of TGAs is important. Methods: In this study, we conducted a comprehensive in analysis of the TGA gene family in peanut to elucidate their regulatory mechanisms and expression patterns under abiotic stress and hormone treatments. Furthermore, functional studies on the representative AhTGA gene in peanut cultivars were conducted using transgenic Arabidopsis and soybean hair roots. Results: The genome-wide analysis revealed that a total of 20 AhTGA genes were identified and classified into five subfamilies. Collinearity analysis revealed that AhTGA genes lack tandem duplication, and their amplification in the cultivated peanut genome primarily relies on the whole-genome duplication of the diploid wild peanut to form tetraploid cultivated peanut, as well as segment duplication between the A and B subgenomes. Promoter and Protein-protein interaction analysis identified a wide range of cis-acting elements and potential interacting proteins associated with growth and development, hormones, and stress responses. Expression patterns of AhTGA genes in different tissues, under abiotic stress conditions for low temperature and drought, and in response to hormonal stimuli revealed that seven AhTGA genes from groups I (AhTGA04, AhTGA14 and AhTGA20) and II (AhTGA07, AhTGA11, AhTGA16 and AhTGA18) are involved in the response to abiotic stress and hormonal stimuli. The hormone treatment results indicate that these AhTGA genes primarily respond to the regulation of jasmonic acid and salicylic acid. Overexpressing AhTGA11 in Arabidopsis enhances resistance to cold and drought stress by increasing antioxidant activities and altering endogenous hormone levels, particularly ABA, SA and JA. Discussion: The AhTGA genes plays a crucial role in hormone regulation and stress response during peanut growth and development. The findings provide insights into peanut's abiotic stress tolerance mechanisms and pave the way for future functional studies.

3.
Front Plant Sci ; 14: 1135580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521911

RESUMO

Changes in the canopy microclimate in intercropping systems, particularly in the light environment, have important effects on the physiological characteristics of photosynthesis and yield of crops. Although different row ratio configurations and strip widths of dwarf crops in intercropping systems have important effects on canopy microclimate, little information is available on the effects of intercropping on chlorophyll synthesis and photosynthetic physiological properties of dwarf crops. A 2-year field experiment was conducted in 2019 and 2020, with five treatments: sole maize (SM), sole peanut (SP), four rows of maize intercropping with eight rows of peanut (M4P8), four rows of maize intercropping with four rows of peanut (M4P4), and four rows of maize intercropping with two rows of peanut (M4P2). The results showed that the light transmittance [photosynthetically active radiation (PAR)], photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) of intercropped peanut canopy were reduced, while the intercellular carbon dioxide concentration (Ci) was increased, compared with SP. In particular, the M4P8 pattern Pn (2-year mean) was reduced by 5.68%, 5.33%, and 5.30%; Tr was reduced by 7.41%, 5.45%, and 5.95%; and Gs was reduced by 8.20%, 6.88%, and 6.46%; and Ci increased by 11.95%, 8.06%, and 9.61% compared to SP, at the flowering needle stage, pod stage, and maturity, respectively. M4P8 improves the content of chlorophyll synthesis precursor and conversion efficiency, which promotes the utilization efficiency of light energy. However, it was significantly reduced in M4P2 and M4P4 treatment. The dry matter accumulation and pod yield of peanut in M4P8 treatment decreased, but the proportion of dry matter distribution in the late growth period was more transferred to pods. The full pod number decreases as the peanut row ratio decreases and increases with year, but there is no significant difference between years. M4P8 has the highest yield and land use efficiency and can be used as a reference row ratio configuration for maize-peanut intercropping to obtain relatively high yield benefits.

4.
Front Plant Sci ; 14: 1343402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38312353

RESUMO

Introduction: Trehalose is vital for plant metabolism, growth, and stress resilience, relying on Trehalose-6-phosphate synthase (TPS) and Trehalose-6-phosphate phosphatase (TPP) genes. Research on these genes in cultivated peanuts (Arachis hypogaea) is limited. Methods: This study employed bioinformatics to identify and analyze AhTPS and AhTPP genes in cultivated peanuts, with subsequent experimental validation of AhTPS9's role in cold tolerance. Results: In the cultivated peanut genome, a total of 16 AhTPS and 17 AhTPP genes were identified. AhTPS and AhTPP genes were observed in phylogenetic analysis, closely related to wild diploid peanuts, respectively. The evolutionary patterns of AhTPS and AhTPP genes were predominantly characterized by gene segmental duplication events and robust purifying selection. A variety of hormone-responsive and stress-related cis-elements were unveiled in our analysis of cis-regulatory elements. Distinct expression patterns of AhTPS and AhTPP genes across different peanut tissues, developmental stages, and treatments were revealed, suggesting potential roles in growth, development, and stress responses. Under low-temperature stress, qPCR results showcased upregulation in AhTPS genes (AhTPS2-5, AhTPS9-12, AhTPS14, AhTPS15) and AhTPP genes (AhTPP1, AhTPP6, AhTPP11, AhTPP13). Furthermore, AhTPS9, exhibiting the most significant expression difference under cold stress, was obviously induced by cold stress in cultivated peanut, and AhTPS9-overexpression improved the cold tolerance of Arabidopsis by protect the photosynthetic system of plants, and regulates sugar-related metabolites and genes. Discussion: This comprehensive study lays the groundwork for understanding the roles of AhTPS and AhTPP gene families in trehalose regulation within cultivated peanuts and provides valuable insights into the mechanisms related to cold stress tolerance.

5.
Int J Mol Sci ; 23(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36293287

RESUMO

Phosphatidyl ethanolamine-binding proteins (PEBPs) are involved in regulating flowering time and various developmental processes. Functions and expression patterns in cultivated peanuts (Arachis hypogaea L.) remain unknown. In this study, 33 PEBP genes in cultivated peanuts were identified and divided into four subgroups: FT, TFL, MFT and FT-like. Gene structure analysis showed that orthologs from A and B genomes in cultivated peanuts had highly similar structures, but some orthologous genes have subgenomic dominance. Gene collinearity and phylogenetic analysis explain that some PEBP genes play key roles in evolution. Cis-element analysis revealed that PEBP genes are mainly regulated by hormones, light signals and stress-related pathways. Multiple PEPB genes had different expression patterns between early and late-flowering genotypes. Further detection of its response to temperature and photoperiod revealed that PEBPs ArahyM2THPA, ArahyEM6VH3, Arahy4GAQ4U, ArahyIZ8FG5, ArahyG6F3P2, ArahyLUT2QN, ArahyDYRS20 and ArahyBBG51B were the key genes controlling the flowering response to different flowering time genotypes, photoperiods and temperature. This study laid the foundation for the functional study of the PEBP gene in cultivated peanuts and the adaptation of peanuts to different environments.


Assuntos
Arachis , Regulação da Expressão Gênica de Plantas , Arachis/genética , Arachis/metabolismo , Filogenia , Flores/metabolismo , Proteínas de Plantas/metabolismo , Genômica , Hormônios/metabolismo , Etanolaminas/metabolismo
6.
BMC Plant Biol ; 22(1): 460, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36162997

RESUMO

BACKGROUND: Drought stress has negative effects on plant growth and productivity. In this study, a comprehensive analysis of physiological responses and gene expression was performed. The responses and expressions were compared between drought-tolerant (DT) and drought-sensitive (DS) peanut varieties to investigate the regulatory mechanisms and hub genes involved in the impact of drought stress on culture. RESULTS: The drought-tolerant variety had robust antioxidative capacities with higher total antioxidant capacity and flavonoid contents, and it enhanced osmotic adjustment substance accumulation to adapt to drought conditions. KEGG analysis of differentially expressed genes demonstrated that photosynthesis was strongly affected by drought stress, especially in the drought-sensitive variety, which was consistent with the more severe suppression of photosynthesis. The hub genes in the key modules related to the drought response, including genes encoding protein kinase, E3 ubiquitin-protein ligase, potassium transporter, pentatricopeptide repeat-containing protein, and aspartic proteinase, were identified through a comprehensive combined analysis of genes and physiological traits using weighted gene co-expression network analysis. There were notably differentially expressed genes between the two varieties, suggesting the positive roles of these genes in peanut drought tolerance. CONCLUSION: A comprehensive analysis of physiological traits and relevant genes was conducted on peanuts with different drought tolerances. The findings revealed diverse drought-response mechanisms and identified candidate genes for further research.


Assuntos
Ácido Aspártico Proteases , Secas , Antioxidantes , Arachis/genética , Ácido Aspártico Proteases/genética , Flavonoides , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Potássio , Proteínas Quinases/genética , Estresse Fisiológico/genética , Ubiquitina-Proteína Ligases/genética
7.
Front Plant Sci ; 13: 957336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991432

RESUMO

Belowground interactions mediated by root exudates are critical for the productivity and efficiency of intercropping systems. Herein, we investigated the process of microbial community assembly in maize, peanuts, and shared rhizosphere soil as well as their regulatory mechanisms on root exudates under different planting patterns by combining metabolomic and metagenomic analyses. The results showed that the yield of intercropped maize increased significantly by 21.05% (2020) and 52.81% (2021), while the yield of intercropped peanut significantly decreased by 39.51% (2020) and 32.58% (2021). The nitrogen accumulation was significantly higher in the roots of the intercropped maize than in those of sole maize at 120 days after sowing, it increased by 129.16% (2020) and 151.93% (2021), respectively. The stems and leaves of intercropped peanut significantly decreased by 5.13 and 22.23% (2020) and 14.45 and 24.54% (2021), respectively. The root interaction had a significant effect on the content of ammonium nitrogen (NH4 +-N) as well as the activities of urease (UE), nitrate reductase (NR), protease (Pro), and dehydrogenase (DHO) in the rhizosphere soil. A combined network analysis showed that the content of NH4 +-N as well as the enzyme activities of UE, NR and Pro increased in the rhizosphere soil, resulting in cyanidin 3-sambubioside 5-glucoside and cyanidin 3-O-(6-Op-coumaroyl) glucoside-5-O-glucoside; shisonin were significantly up-regulated in the shared soil of intercropped maize and peanut, reshaped the bacterial community composition, and increased the relative abundance of Bradyrhizobium. These results indicate that interspecific root interactions improved the soil microenvironment, regulated the absorption and utilization of nitrogen nutrients, and provided a theoretical basis for high yield and sustainable development in the intercropping of maize and peanut.

8.
PeerJ ; 10: e13777, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35919403

RESUMO

Rotational strip intercropping (RSI) of cereals and legumes has been developed and widely carried out to alleviate continuous cropping obstacles, to control erosion and to improve field use efficiency. In this study, a four-year fixed-field experiment was carried out in northeast China with three treatments: continuous cropping of maize, continuous cropping of peanuts and rotational strip intercropping of maize and peanut. The results show that crop rotation improved the main-stem height, branch number, lateral branch length, and yield and quality of peanuts; the yield was the highest in 2018, when it was increased by 39.5%. RSI improved the contents of total N, available N, total P, available P, total K and available K; the content of available N was the highest in 2018, with an increase of 70%. Rhizosphere soil urease and catalase activities were significantly increased and were the highest in 2017, reaching 183.13% and 91.21%, respectively. According to a high-throughput sequencing analysis, the rhizosphere soil bacterial richness and specific OTUs decreased in peanut rhizosphere soil, while the fungal increased. There were differences in the bacterial and fungal community structures; specifically, the abundance of Acidobacteria and Planctomycetes increased among bacteria and the abundance of beneficial microorganisms such as Ascomycota increased among fungi. In conclusion, rotational strip intercropping of maize and peanut increased the yield and quality of peanuts and conducive to alleviating the obstacles facing the continuous cropping of peanuts. Among then, soil physicochemical properties, enzyme activity and microbial diversity were significantly affected the yield of peanut.


Assuntos
Microbiota , Solo , Solo/química , Arachis , Agricultura/métodos , Zea mays , Bactérias
9.
Biomacromolecules ; 23(9): 3728-3742, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35926229

RESUMO

Hemoperfusion is an important method to remove endotoxins and save the lives of patients with sepsis. However, the current adsorbents for hemoperfusion have disadvantages of insufficient endotoxin adsorption capacity, poor blood compatibility, and so on. Herein, we proposed a novel emulsion templating (ET) method to prepare ultraporous and double-network carboxylated chitosan (CCS)-poly(diallyl dimethylammonium chloride) (PDDA) hydrogel spheres (ET-CCSPD), bearing both negative and positive charges. CCS was introduced to balance the strong positive charges of PDDA to improve hemocompatibility, and emulsion templates endowed the adsorbent with an ultraporous structure for enhanced adsorption efficacy. The ET-CCSPDs neither damaged blood cells nor activated complement responses. In addition, the activated partial thromboplastin time (APTT) was prolonged to 8.5 times, which was beneficial for reducing the injection of anticoagulant in patients. The ET-CCSPDs had excellent scavenging performance against bacteria and endotoxin, with removal ratios of 96.7% for E. coli and 99.8% for S. aureus, respectively, and the static removal ratio of endotoxin in plasma was as high as 99.1% (C0 = 5.50 EU/mL, critical illness level). An adsorption cartridge filled with the ET-CCSPDs could remove 84.7% of endotoxin within 1 h (C0 = 100 EU/mL in PBS). Interestingly, the ET-CCSPDs had a good inhibitory effect on the cytokines produced by endotoxin-mediated septic blood. By developing the ET method to prepare ultraporous and double-network adsorbents, the problems of low adsorption efficiency and poor blood compatibility of traditional endotoxin adsorbents have been solved, thus opening a new route to fabricate absorbents for blood purification.


Assuntos
Quitosana , Sepse , Adsorção , Antibacterianos , Anticoagulantes/farmacologia , Emulsões , Endotoxinas , Escherichia coli , Humanos , Hidrogéis/farmacologia , Sepse/tratamento farmacológico , Staphylococcus aureus
10.
Genomics ; 114(2): 110285, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124174

RESUMO

The unclear molecular mechanism by which peanuts adapt to chilling stress limits progress in molecular breeding for peanut chilling tolerance. Here, the physiological and transcriptional differences between two genotypes with contrasting tolerance under chilling stress were compared. The inhibition of photosynthesis mainly caused by stomatal factors was a common response of peanut seedlings to chilling stress. Chilling-tolerant genotypes could inhibit the accumulation of ROS to adapt to chilling stress, and enhanced activities of CAT and APX were major causes of lower H2O2 content. The results of a conjoint analysis of physiological indices and the RNA-Seq database by WGCNA indicated that the genes in key modules were significantly enriched in pathways related to the oxidation-reduction process. Hub genes encoding RLK, CAT, MYC4, AOS, GST, PP2C, UPL5 and ZFP8 were likely to positively regulate peanut chilling tolerance, but hub genes encoding PAO, NAC2 and NAC72 were likely to negatively regulate peanut chilling tolerance.


Assuntos
Arachis , Transcriptoma , Arachis/genética , Arachis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Plântula/genética , Plântula/metabolismo , Estresse Fisiológico/genética
11.
BMC Microbiol ; 22(1): 14, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996375

RESUMO

BACKGROUND: Intercropping, a diversified planting pattern, increases land use efficiency and farmland ecological diversity. We explored the changes in soil physicochemical properties, nutrient uptake and utilization, and microbial community composition in wide-strip intercropping of maize and peanut. RESULTS: The results from three treatments, sole maize, sole peanut and intercropping of maize and peanut, showed that intercropped maize had a marginal advantage and that the nutrient content of roots, stems and grains in side-row maize was better than that in the middle row of intercropped maize and sole maize. The yield of intercropped maize was higher than that of sole cropping. The interaction between crops significantly increased soil peroxidase activity, and significantly decreased protease and dehydrogenase activities in intercropped maize and intercropped peanut. The diversity and richness of bacteria and fungi decreased in intercropped maize rhizosphere soil, whereas the richness of fungi increased intercropped peanut. RB41, Candidatus-udaeobacter, Stropharia, Fusarium and Penicillium were positively correlated with soil peroxidase activity, and negatively correlated with soil protease and dehydrogenase activities. In addition, intercropping enriched the functional diversity of the bacterial community and reduced pathogenic fungi. CONCLUSION: Intercropping changed the composition and diversity of the bacterial and fungal communities in rhizosphere soil, enriched beneficial microbes, increased the nitrogen content of intercropped maize and provided a scientific basis for promoting intercropping in northeastern China.


Assuntos
Agricultura/métodos , Arachis/crescimento & desenvolvimento , Microbiota , Nutrientes/metabolismo , Zea mays/crescimento & desenvolvimento , Arachis/metabolismo , Arachis/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , China , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Enzimas/análise , Enzimas/metabolismo , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Nitrogênio/análise , Nitrogênio/metabolismo , Nutrientes/análise , Rizosfera , Solo/química , Microbiologia do Solo , Zea mays/metabolismo , Zea mays/microbiologia
12.
Physiol Plant ; 174(1): e13610, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34888889

RESUMO

Drought stress has been the major constraint on peanut yield and quality, and an understanding of the function of long non-coding (lncRNAs) in the peanut drought stress response is still in its infancy. In this study, two peanut varieties with contrasting drought tolerance were used to explore the functions of lncRNAs in the peanut drought response, and the results showed that the drought-tolerant variety presented greater antioxidant enzyme activity, osmotic adjustment ability, and photosynthesis under drought conditions. There were 4329 lncRNAs identified in the two varieties, of which 535 and 663 lncRNAs were differentially expressed in NH5 and FH18, respectively. The cis targets of the differentially expressed lncRNAs were putatively involved in secondary metabolite biosynthesis and other basic metabolic processes. A total of 673 competing endogenous RNA (ceRNA) pairs were selected specifically in NH5, and the associated ceRNA network revealed six lncRNAs, MSTRG.70535.2, MSTRG.86570.2, MSTRG.86570.1, MSTRG.100618.1, MSTRG.81214.2, and MSTRG.30931.1were considered as hub nodes. They were speculated to contribute to enhancing peanut drought tolerance, such as regulating transcription and plant growth processes, thereby improving the drought stress response. In this study, lncRNAs and mRNAs interaction networks were constructed to aid a comprehensive understanding of the peanut drought stress response and form a basis for future research.


Assuntos
MicroRNAs , RNA Longo não Codificante , Arachis/genética , Biomarcadores , Secas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Longo não Codificante/genética
13.
J Colloid Interface Sci ; 609: 718-733, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34863546

RESUMO

Enhancing long-term antibacterial activity of membrane materials is an effective strategy to reduce biological contamination. Herein, we developed a long-term, synergistic antibacterial polyacrylonitrile (PAN) nanofiber membrane by a "one-pot" electrospinning process. In the reaction solution of PAN and N, N-dimethylformamide (DMF), silver-silicon dioxide nanoparticles (Ag@SiO2 NPs) are in-situ synthesized and stabilized using silane coupling agent; and [2-(methacryloyloxy)-ethyl] trimethylammonium chloride (MT) monomers are then in-situ cross-linked to obtain a polyquaternary ammonium salt (PMT). Subsequently, the casting solution is directly used to fabricate Ag@SiO2/PMT-PAN nanofibrous membrane (NFM) via electrospinning. The antibacterial activity, reusability, synergy effect and biological safety of the Ag@SiO2/PMT-PAN NFM are systematically investigated, and the synergistic antibacterial mechanism is also explored. Even at very low (0.3 wt%) content of silver, the Ag@SiO2/PMT-PAN NFM exhibits excellent antibacterial activity against E. coli (99%) and S. aureus (99%). Also, the antibacterial ability of the NFM remains the same level after three cycles of antibacterial processes with the efficient synergy effects of Ag@SiO2 and PMT components. When the Ag@SiO2/PMT-PAN contacts with bacteria, the PMT attracts and kills the bacteria through electrostatic action. The bacteria with damaged cell membranes are deposited on the nanofibrous membrane, which could greatly promote the release of Ag+ and further enhance the antibacterial activity. Moreover, L929 fibroblasts are co-cultured with the extract of 4 mg/mL Ag@SiO2/PMT-PAN for 5 days, which exhibits a low cytotoxicity with a cell proliferation ratio of 95%. This work opens new pathways for developing long-term effective and synergistic antibacterial nanofibrous membrane materials to prevent infections associated with biomedical equipment.


Assuntos
Nanofibras , Resinas Acrílicas , Antibacterianos/farmacologia , Escherichia coli , Dióxido de Silício , Staphylococcus aureus
14.
Front Plant Sci ; 13: 1110910, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36816479

RESUMO

Although foxtail millet, as small Panicoid crop, is of drought resilient, drought stress has a significant effect on panicle of foxtail millet at the yield formation stage. In this study, the changes of panicle morphology, photosynthesis, antioxidant protective enzyme system, reactive oxygen species (ROS) system, and osmotic regulatory substance and RNA-seq of functional leaves under light drought stress (LD), heavy drought stress (HD), light drought control (LDCK) and heavy drought control (HDCK) were studied to get a snap-shot of specific panicle morphological changes, physiological responses and related molecular mechanisms. The results showed that the length and weight of panicle had decreased, but with increased empty abortive rate, and then yield dropped off 14.9% and 36.9%, respectively. The photosynthesis of millet was significantly decreased, like net photosynthesis rate, stomatal conductance and transpiration rate, especially under HD treatment with reluctant recovery from rehydration. Under LD and HD treatment, the peroxidase (POD) was increased by 34% and 14% and the same as H2O2 by 34.7% and 17.2% compared with LDCK and HDCK. The ability to produce and inhibit O2- free radicals under LD treatment was higher than HD. The content of soluble sugar was higher under LD treatment but the proline was higher under HD treatment. Through RNA-seq analysis, there were 2,393 and 3,078 different genes expressed under LD and HD treatment. According to the correlation analysis between weighted gene coexpression network analysis (WGCNA) and physiological traits, the co-expression network of several modules with high correlation was constructed, and some hub genes of millet in response to drought stress were found. The expression changes relating to carbon fixation, sucrose and starch synthesis, lignin synthesis, gibberellin synthesis, and proline synthesis of millet were specifically analyzed. These findings provide a full perspective on how drought affects the yield formation of foxtail millet by constructing one work model thereby providing theoretical foundation for hub genes exploration and drought resistance breeding of foxtail millet.

15.
Front Microbiol ; 12: 678250, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108953

RESUMO

Soil microorganisms play important roles in crop production and sustainable agricultural management. However, soil conditions and crop selection are key determining factors for soil microbial communities. This study investigated the effect of plant types and soil salinity on the microbial community of interspecific interaction zone (II) based on the sorghum/peanut intercropping system. Microbial community diversity and composition were determined through PacBio single molecule, real-time sequencing of 16S rDNA and internal transcribed spacer (ITS) genes. Results showed Proteobacteria, Bacteroidota, and Acidobacteriota to be the dominant bacterial phyla in IP, II, and IS, whereas Ascomycota, Basidiomycota, and Mucoromycota were the dominant fungal phyla. Under salt-treated soil conditions, the plants-specific response altered the composition of the microbial community (diversity and abundance). Additionally, the interspecific interactions were also helpful for maintaining the stability and ecological functions of microbial communities by restructuring the otherwise stable core microbiome. The phylogenetic structure of the bacterial community was greatly similar between IP and II while that of the fungal community was greatly similar between IP and IS; however, the phylogenetic distance between IP and IS increased remarkably upon salinity stress. Overall, salinity was a dominant factor shaping the microbial community structure, although plants could also shape the rhizosphere microenvironment by host specificity when subjected to environmental stresses. In particular, peanut still exerted a greater influence on the microbial community of the interaction zone than sorghum.

16.
Adv Healthc Mater ; 10(19): e2100784, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34050632

RESUMO

Multifunctional hydrogels acting as wound dressing have received extensive attention in soft tissue repair; however, it is still a challenge to develop a non-antibiotic-dependent antibacterial hydrogel that has tunable adhesion and deformation to achieve on-demand removal. Herein, an asymmetric adhesive hydrogel with near-infrared (NIR)-triggered tunable adhesion, self-deformation, and bacterial eradication is designed. The hydrogel is prepared by the crosslinking polymerization of N-isopropylacrylamide and acrylic acid, during the sedimentation of conductive PPy-PDA nanoparticles based on the polymerization of pyrrole (Py) and dopamine (DA). Due to the conversion capacity from NIR light into heat for PPy-PDA NPs, the formed temperature-sensitive hydrogel exhibits tissue adhesive as well as NIR-triggered tunable adhesion and self-deformation property, which can achieve an on-demand dressing refreshing. Systematically in vitro/in vivo antibacterial experiments indicate that the hydrogel shows excellent disinfection capability to both Gram-negative and Gram-positive bacteria. The in vivo experiments in a full-layer cutaneous wound model demonstrate that the hydrogel has a good treatment effect to promote wound healing. Overall, the asymmetric hydrogel with tunable adhesion, self-deformation, conductive, and photothermal antibacterial activity may be a promising candidate to fulfill the functions of adhesion on skin tissue, easy removing on-demand, and accelerating the wound healing process.


Assuntos
Bactérias , Hidrogéis , Antibacterianos/farmacologia , Bactérias Gram-Positivas , Cicatrização
17.
BMC Plant Biol ; 21(1): 64, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504328

RESUMO

BACKGROUND: The peanut is one of the most important oil crops worldwide. Qualities and yields of peanut can be dramatically diminished by abiotic stresses particularly by drought. Therefore, it would be beneficial to gain a comprehensive understanding on peanut drought-responsive transcriptional regulatory activities, and hopefully to extract critical drought-tolerance-related molecular mechanism from it. RESULTS: In this study, two peanut Arachis hypogaea L. varieties, NH5 (tolerant) and FH18 (sensitive), which show significantly differential drought tolerance, were screened from 23 main commercial peanut cultivars and used for physiological characterization and transcriptomic analysis. NH5 leaves showed higher water and GSH contents, faster stomatal closure, and lower relative conductivity (REC) than FH18. Under the time-course of drought-treatments 0 h (CK), 4 h (DT1), 8 h (DT2) and 24 h (DT3), the number of down-regulated differential expressed genes (DEGs) increased with the progression of treatments indicating repressive impacts on transcriptomes by drought in both peanut varieties. CONCLUSIONS: Nevertheless, NH5 maintained more stable transcriptomic dynamics than FH18. Furthermore, annotations of identified DEGs implicate signal transduction, the elimination of reactive oxygen species, and the maintenance of cell osmotic potential which are key drought-tolerance-related pathways. Finally, evidences from the examination of ABA and SA components suggested that the fast stomatal closure in NH5 was likely mediated through SA rather than ABA signaling. In all, these results have provided us a comprehensive overview of peanut drought-responsive transcriptomic changes, which could serve as solid foundation for further identification of the molecular drought-tolerance mechanism in peanut and other oil crops.


Assuntos
Aclimatação/genética , Arachis/genética , Secas , Genes de Plantas , Arachis/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , RNA-Seq , Estresse Fisiológico
18.
DNA Cell Biol ; 40(2): 373-383, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33373540

RESUMO

Peanut is an important crash crop worldwide, and it is often threatened by drought stress due to unexpected extreme weather events. In this work, NH5 and FH18 were selected as drought-tolerant and drought-sensitive varieties, respectively. Comparison of their physiological responses revealed that NH5 showed less wilting, higher relative water content and lower water loss rate of detached leaves, lower electrolyte leakage, and stronger antioxidant ability under drought stress than did FH18. Based on comparative transcriptomic analysis, 5376 differentially expressed mRNAs were commonly identified in the two varieties, and 2993 genes specifically changed in the drought-tolerant variety and were mainly enriched in photosynthesis-antenna proteins and photosynthetic pathways. Furthermore, 73 microRNAs (miRNAs) were differentially expressed in the drought tolerance variety specifically under drought stress; of these, two key candidate miRNAs, novel miR_416 and novel miR_73, were identified, and the majority of their target genes were enriched in phenylpropanoid biosynthesis, linoleic acid metabolism, and cutin, suberine, and wax biosynthesis. This study lays the foundation for the analysis of the molecular mechanism of drought tolerance and promotes the genetic improvement of peanut drought tolerance.


Assuntos
Arachis/genética , Arachis/fisiologia , Secas , Genes de Plantas/genética , Genômica , MicroRNAs/genética
19.
Front Plant Sci ; 11: 1110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849684

RESUMO

Cold stress restricts peanut (Arachis hypogaea L.) growth, development, and yield. However, the specific mechanism of cold tolerance in peanut remains unknown. Here, the comparative physiological, transcriptomic, and lipidomic analyses of cold tolerant variety NH5 and cold sensitive variety FH18 at different time points of cold stress were conducted to fill this gap. Transcriptomic analysis revealed lipid metabolism including membrane lipid and fatty acid metabolism may be a significant contributor in peanut cold tolerance, and 59 cold-tolerant genes involved in lipid metabolism were identified. Lipidomic data corroborated the importance of membrane lipid remodeling and fatty acid unsaturation. It indicated that photosynthetic damage, resulted from the alteration in fluidity and integrity of photosynthetic membranes under cold stress, were mainly caused by markedly decreased monogalactosyldiacylglycerol (MGDG) levels and could be relieved by increased digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG) levels. The upregulation of phosphatidate phosphatase (PAP1) and phosphatidate cytidylyltransferase (CDS1) inhibited the excessive accumulation of PA, thus may prevent the peroxidation of membrane lipids. In addition, fatty acid elongation and fatty acid ß-oxidation were also worth further studied in peanut cold tolerance. Finally, we constructed a metabolic model for the regulatory mechanism of peanut cold tolerance, in which the advanced lipid metabolism system plays a central role. This study lays the foundation for deeply analyzing the molecular mechanism and realizing the genetic improvement of peanut cold tolerance.

20.
J Colloid Interface Sci ; 576: 1-9, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32408158

RESUMO

Pathogen capture and removal from whole blood is a new strategy for extracorporeal blood purification, especially in initial treatment of sepsis before pathogen identification. Herein, hemocompatible magnetic particles with broad-spectrum bacteria capture capability were proposed for pathogen removal from whole blood, omitting the necessity of pathogen identification. Firstly, we designed and synthesized a new kind of imidazolium-based ionic liquid with good antibacterial activity, and polydopamine coating was utilized as a hemocompatible platform to immobilize ionic liquids on Fe3O4 nanoparticles, forming the hemocompatible magnetic particles (Fe3O4@PDA-IL). The magnetic particles exhibited good hemocompatibility and performed well in the removal of various species of clinically significant pathogens from human whole blood, including S. aureus, E. coli, and the hard-to-treat bacteria of P. aeruginosa and Methicillin-resistant S. aureus, which are the most common pathogens in bloodstream infections. Besides, the Fe3O4@PDA-IL particles were also capable to remove bacterial endotoxins from blood, inhibiting further aggravation of sepsis. Overall, we demonstrated the application of hemocompatible magnetic particles in the removal of pathogens and bacterial endotoxins from whole blood via electrostatic and hydrophobic interactions, without significant effects on blood cells or the activation of coagulation and complement, addressing the feasibility of using imidazolium-based ionic liquids for bacteria capture and removal from whole blood. It would contribute to the development of magnetic separation-based approaches to remove bacteria and bacterial endotoxin for extracorporeal blood purification, especially in initial sepsis therapy before pathogen identification.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Bactérias , Escherichia coli , Humanos , Fenômenos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...