Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Health Perspect ; 131(12): 127016, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38133959

RESUMO

BACKGROUND: Inorganic arsenic (As) may increase the risk of cardiovascular disease (CVD) and all-cause mortality through accelerated aging, which can be estimated using epigenetic-based measures. OBJECTIVES: We evaluated three DNA methylation-based aging measures (PhenoAge, GrimAge, DunedinPACE) (epigenetic aging measures) as potential mediators of the previously reported association of As exposure with CVD incidence, CVD mortality, and all-cause mortality in the Strong Heart Study (SHS), an epidemiological cohort of American Indian adults. METHODS: Blood DNA methylation and urinary As levels were measured in 2,323 SHS participants (41.5% men, mean age of 55 years old). PhenoAge and GrimAge values were calculated using a residual-based method. We tested the association of urinary As with epigenetic aging measures using linear regression, the association of epigenetic aging measures with the three health outcomes using additive hazards models, and the mediation of As-related CVD incidence, CVD mortality, and all-cause mortality by epigenetic aging measures using the product of coefficients method. RESULTS: SHS participants with higher vs. lower urinary As levels had similar PhenoAge age, older GrimAge age, and faster DunedinPACE. An interquartile range increase in urinary As was associated with higher of PhenoAge age acceleration [mean difference (95% confidence interval)=0.48 (0.17, 0.80) years], GrimAge age acceleration [0.80 (0.60, 1.00) years], and DunedinPACE [0.011 (0.005, 0.018)], after adjusting for age, sex, center location, genetic components, smoking status, and body mass index. Of the 347 incident CVD events per 100,000 person-years associated with a doubling in As exposure, 21.3% (9.1, 57.1) and 22.6% (9.5, 56.9), were attributable to differences in GrimAge and DunedinPACE, respectively. DISCUSSION: Arsenic exposure was associated with older GrimAge and faster DunedinPACE measures of biological age. Furthermore, accelerated biological aging measured from DNA methylation accounted for a relevant fraction of As-associated risk for CVD, CVD mortality, and all-cause mortality in the SHS, supporting the role of As in accelerated aging. Research of the biological underpinnings can contribute to a better understanding of the role of aging in arsenic-related disease. https://doi.org/10.1289/EHP11981.


Assuntos
Arsênio , Doenças Cardiovasculares , Epigênese Genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Envelhecimento , Indígena Americano ou Nativo do Alasca , Arsênio/toxicidade , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/epidemiologia , Metilação de DNA , Mortalidade
2.
Environ Int ; 178: 108064, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37364305

RESUMO

INTRODUCTION: Native American communities suffer disproportionately from elevated metal exposures and increased risk for cardiovascular diseases and diabetes. DNA methylation is a sensitive biomarker of aging-related processes and novel epigenetic-based "clocks" can be used to estimate accelerated biological aging that may underlie increased risk. Metals alter DNA methylation, yet little is known about their individual and combined impact on epigenetic age acceleration. Our objective was to investigate the associations of metals on several DNA methylation-based aging measures in the Strong Heart Study (SHS) cohort. METHODS: Blood DNA methylation data from 2,301 SHS participants was used to calculate age acceleration of epigenetic clocks (PhenoAge, GrimAge, DunedinPACE, Hannum, Horvath). Urinary metals [arsenic (As), cadmium (Cd), tungsten (W), zinc (Zn), selenium (Se), molybdenum (Mo)] were creatinine-adjusted and categorized into quartiles. We examined associations of individual metals through linear regression models and used Bayesian Kernel Machine Regression (BKMR) for the impact of the total metal mixture on epigenetic age acceleration. RESULTS: The mixture of nonessential metals (W, As, Cd) was associated with greater GrimAge acceleration and DunedinPACE, while the essential metal mixture (Se, Zn, Mo) was associated with lower epigenetic age acceleration. Cd was associated with increased epigenetic age acceleration across all clocks and BKMR analysis suggested nonlinear associations between Se and DunedinPACE, GrimAge, and PhenoAge acceleration. No interactions between individual metals were observed. The associations between Cd, Zn, and epigenetic age acceleration were greater in never smokers in comparison to current/former smokers. CONCLUSION: Nonessential metals were positively associated with greater epigenetic age acceleration, with strongest associations observed between Cd and DunedinPACE and GrimAge acceleration. In contrast, essential metals were associated with lower epigenetic aging. Examining the influence of metal mixtures on epigenetic age acceleration can provide insight into metals and aging-related diseases.


Assuntos
Envelhecimento , Metilação de DNA , Metais , Humanos , Envelhecimento/genética , Indígena Americano ou Nativo do Alasca , Arsênio , Teorema de Bayes , Cádmio , Epigênese Genética , Metais/toxicidade , Selênio , Zinco
3.
FASEB J ; 35(10): e21909, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547144

RESUMO

Metabolic stress contributes to the regulation of cell death in normal and diseased tissues. While different forms of cell death are known to be regulated by metabolic stress, how the cell engulfment and killing mechanism entosis is regulated is not well understood. Here we find that the death of entotic cells is regulated by the presence of amino acids and activity of the mechanistic target of rapamycin (mTOR). Amino acid withdrawal or mTOR inhibition induces apoptosis of engulfed cells and blocks entotic cell death that is associated with the lipidation of the autophagy protein microtubule-associated protein light chain 3 (LC3) to entotic vacuoles. Two other live cell engulfment programs, homotypic cell cannibalism (HoCC) and anti-CD47 antibody-mediated phagocytosis, known as phagoptosis, also undergo a similar vacuole maturation sequence involving LC3 lipidation and lysosome fusion, but only HoCC involves mTOR-dependent regulation of vacuole maturation and engulfed cell death similar to entosis. We further find that the regulation of cell death by mTOR is independent of autophagy activation and instead involves the 4E-BP1/2 proteins that are known regulators of mRNA translation. Depletion of 4E-BP1/2 proteins can restore the mTOR-regulated changes of entotic death and apoptosis rates of engulfed cells. These results identify amino acid signaling and the mTOR-4E-BP1/2 pathway as an upstream regulation mechanism for the fate of live engulfed cells formed by entosis and HoCC.


Assuntos
Aminoácidos/metabolismo , Entose , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígeno CD47/imunologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Sobrevivência Celular , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Fagocitose/imunologia , Biossíntese de Proteínas
4.
Expert Opin Pharmacother ; 22(7): 897-906, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33382005

RESUMO

Introduction: For elderly adults in the United States, stroke is the fifth leading cause of death of which ischemic strokes comprise a vast majority. Optimal pharmacological management of elderly ischemic stroke patients involves both reperfusion and supportive care. Recent research into pharmacological management has focused on vascular, immunomodulatory, cytoprotective, and alternative agents, some of which have shown limited success in clinical trials. However, no treatments have been established as a reliable mode for management of cerebral ischemia for elderly adults beyond acute thrombolysis.Areas covered: The authors conducted a literature search for ischemic stroke management in the elderly and a search for human drug studies for managing ischemic stroke on clinicaltrials.gov. Here, they describe recent progress in the pharmacological management of cerebral ischemia in the elderly.Expert opinion: Many drug classes (antihypertensive, cytoprotective and immunomodulatory, and alternative agents) have been explored with limited success in managing ischemic stroke, though some have shown preventative benefits. We generally observed a broad gap in evidence on elderly patients from studies across all drug classes, necessitating further studies to gain an understanding of effective management of ischemic stroke in this large demographic of patients.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Idoso , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral/tratamento farmacológico , Fibrinolíticos/uso terapêutico , Humanos , Acidente Vascular Cerebral/tratamento farmacológico , Terapia Trombolítica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA