Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 115(6): 1323-1338, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33400299

RESUMO

Mitochondria play essential roles in eukaryotic cells for glucose metabolism to produce ATP. In Schizosaccharomyces pombe, transcription factor Rst2 can be activated upon glucose deprivation. However, the link between Rst2 and mitochondrial function remains elusive. Here, we monitored Rst2 transcriptional activity in living cells using a Renilla luciferase reporter system, and found that inhibition of mitochondrial complex III/IV caused cells to produce reactive oxygen species (ROS) and nitric oxide (NO), which in turn activated Rst2. Furthermore, Rst2-GFP was observed to translocate from cytoplasm to nucleus upon mitochondrial complex III/IV inhibitors treatment, and deletion of genes associated with complex III/IV resulted in delayed process of Rst2-GFP nuclear exportation under glucose-rich condition. In particular, we found that Rst2 was phosphorylated following the treatment of complex III/IV inhibitors or SNAP. Altogether, our findings suggest that mitochondrial complex III/IV participates in the activation of Rst2 through ROS and NO generation in Schizosaccharomyces pombe.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ativação Enzimática/fisiologia , Mitocôndrias/metabolismo , Fosforilação , S-Nitroso-N-Acetilpenicilamina/farmacologia , Schizosaccharomyces/genética , Transcrição Gênica/genética
2.
Front Oncol ; 11: 576911, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047378

RESUMO

Recent studies reveal that tumor microenvironment contributes to breast cancer (BRCA) development, progression, and therapeutic response. However, the contribution of the tumor microenvironment-related genes in routine diagnostic testing or therapeutic decision making for BRCA remains elusive. Immune/stromal/ESTIMATE scores calculated by the ESTIMATE algorithm quantify immune and stromal components in a tumor, and thus can reflect tumor microenvironment. To investigate the association of the tumor microenvironment-related genes with invasive BRCA prognosis, here we analyzed the immune/stromal/ESTIMATE scores in combination with The Cancer Genome Atlas (TCGA) database in invasive BRCA. We found that immune/stromal/ESTIMATE scores were significantly correlated with the invasive BRCA clinicopathological factors. Based on the immune/stromal/ESTIMATE scores, we extracted a series of differential expression genes (DEGs) related to the tumor microenvironment. Survival analysis was further performed to identify a list of high-frequency DEGs (HF-DEGs), which exhibited prognostic value in invasive BRCA. Importantly, consistent with the results of bioinformatics analysis, immunohistochemistry results showed that high SASH3 expression was associated with a good prognosis in invasive BRCA patients. Our findings suggest that the tumor microenvironment-related HF-DEGs identified in this study have prognostic values and may serve as potential biomarkers and therapeutic targets for invasive BRCA.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32571823

RESUMO

Invasive fungal diseases are a leading cause of mortality among immunocompromised populations. Treatment is notoriously difficult due to the limited number of antifungal drugs as well as the emergence of drug resistance. Tamoxifen (TAM), a selective estrogen receptor modulator frequently used for the treatment of breast cancer, has been found to have antifungal activities and may be a useful addition to the agents used to treat fungal infectious diseases. However, the molecular mechanisms underlying its antifungal actions remain obscure. Here, we screened for mutations that confer sensitivity to azole antifungal drugs by using the fission yeast Schizosaccharomyces pombe as a model and isolated a mutant with a mutation in cls1 (ccr1), an allele of the gene encoding the NADPH-cytochrome P450 reductase Ccr1. We found that strains with a deletion of the ccr1+ gene exhibited hypersensitivities to various drugs, including antifungal drugs (azoles, terbinafine, micafungin), the immunosuppressor FK506, and the anticancer drugs TAM and 5-fluorouracil (5-FU). Unexpectedly, the overexpression of Ccr1 caused yeast cell resistance to TAM but not the other drugs tested here. Additionally, strains with a deletion of Ccr1 displayed pleiotropic phenotypes, including defects in cell wall integrity and vacuole fusion, enhanced calcineurin activity, as well as increased intracellular Ca2+ levels. Overexpression of the constitutively active calcineurin suppressed the drug-sensitive phenotypes of the Δccr1 cells. Notably, TAM treatment of wild-type cells resulted in pleiotropic phenotypes, similar to those of cells lacking Ccr1. Furthermore, TAM inhibited Ccr1 NADPH-cytochrome P450 reductase activities in a dose-dependent manner. Moreover, TAM treatment also inhibited the NADPH-cytochrome P450 reductase activities of Candida albicans and resulted in defective cell wall integrity. Collectively, our findings suggest that Ccr1 is a novel target of TAM and is involved in the antifungal activity of TAM by regulating cell wall integrity in fission yeast.


Assuntos
NADPH-Ferri-Hemoproteína Redutase , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Antifúngicos/farmacologia , Parede Celular , NADPH-Ferri-Hemoproteína Redutase/genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Tamoxifeno/farmacologia
4.
PLoS One ; 15(2): e0228845, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32053662

RESUMO

Sterol regulatory element-binding protein (SREBP), a highly conserved family of membrane-bound transcription factors, is an essential regulator for cellular cholesterol and lipid homeostasis in mammalian cells. Sre1, the homolog of SREBP in the fission yeast Schizosaccharomyces pombe (S. pombe), regulates genes involved in the transcriptional responses to low sterol as well as low oxygen. Previous study reported that casein kinase 1 family member Hhp2 phosphorylated the Sre1 N-terminal transcriptional factor domain (Sre1N) and accelerated Sre1N degradation, and other kinases might exist for regulating the Sre1 function. To gain insight into the mechanisms underlying the Sre1 activity and to identify additional kinases involved in regulation of Sre1 function, we developed a luciferase reporter system to monitor the Sre1 activity through its binding site called SRE2 in living yeast cells. Here we showed that both ergosterol biosynthesis inhibitors and hypoxia-mimic CoCl2 caused a dose-dependent increase in the Sre1 transcription activity, concurrently, these induced transcription activities were almost abolished in Δsre1 cells. Surprisingly, either AMPKα Subunit Ssp2 deletion or Glycogen Synthase Kinases Gsk3/Gsk31 double deletion significantly suppressed ergosterol biosynthesis inhibitors- or CoCl2-induced Sre1 activity. Notably, the Δssp2Δgsk3Δgsk31 mutant showed further decreased Sre1 activity when compared with their single or double deletion. Consistently, the Δssp2Δgsk3Δgsk31 mutant showed more marked temperature sensitivity than any of their single or double deletion. Moreover, the fluorescence of GFP-Sre1N localized at the nucleus in wild-type cells, but significantly weaker nuclear fluorescence of GFP-Sre1N was observed in Δssp2, Δgsk3Δgsk31, Δssp2Δgsk3, Δssp2Δgsk31 or Δssp2Δgsk3Δgsk31 cells. On the other hand, the immunoblot showed a dramatic decrease in GST-Sre1N levels in the Δgsk3Δgsk31 or the Δssp2Δgsk3Δgsk31 cells but not in the Δssp2 cells. Altogether, our findings suggest that Gsk3/Gsk31 may regulate Sre1N degradation, while Ssp2 may regulate not only the degradation of Sre1N but also its translocation to the nucleus.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Transporte Biológico , Regulação Fúngica da Expressão Gênica/genética , Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Quinases da Glicogênio Sintase/metabolismo , Quinases da Glicogênio Sintase/fisiologia , Oxigênio/metabolismo , Fosforilação , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteínas de Ligação a Elemento Regulador de Esterol/fisiologia , Esteróis , Fatores de Transcrição/metabolismo , Ativação Transcricional
5.
Artigo em Inglês | MEDLINE | ID: mdl-30181366

RESUMO

The fight against resistance to antifungal drugs requires a better understanding of the underlying cellular mechanisms. In order to gain insight into the mechanisms leading to antifungal drug resistance, we performed a genetic screen on a model organism, Schizosaccharomyces pombe, to identify genes whose overexpression caused resistance to antifungal drugs, including clotrimazole and terbinafine. We identified the phb2+ gene, encoding a highly conserved mitochondrial protein, prohibitin (Phb2), as a novel determinant of reduced susceptibility to multiple antifungal drugs. Unexpectedly, deletion of the phb2+ gene also exhibited antifungal drug resistance. Overexpression of the phb2+ gene failed to cause drug resistance when the pap1+ gene, encoding an oxidative stress-responsive transcription factor, was deleted. Furthermore, pap1+ mRNA expression was significantly increased when the phb2+ gene was overexpressed or deleted. Importantly, either overexpression or deletion of the phb2+ gene stimulated the synthesis of NO and reactive oxygen species (ROS), as measured by the cell-permeant fluorescent NO probe DAF-FM DA (4-amino-5-methylamino-2',7'-difluorofluorescein diacetate) and the ROS probe DCFH-DA (2',7'-dichlorodihydrofluorescein diacetate), respectively. Taken together, these results suggest that Phb2 dysfunction results in reduced susceptibility to multiple antifungal drugs by increasing NO and ROS synthesis due to dysfunctional mitochondria, thereby activating the transcription factor Pap1 in fission yeast.


Assuntos
Antifúngicos/farmacologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Repressoras/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Clotrimazol/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Óxido Nítrico/metabolismo , Proibitinas , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Schizosaccharomyces/metabolismo , Terbinafina/farmacologia , Fatores de Transcrição/metabolismo
6.
PLoS One ; 13(6): e0198516, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856841

RESUMO

To study sodium homeostasis, we performed a genome-wide screen for deletion strains that show resistance to NaCl. We identified 34 NaCl-resistant strains. Among them, the largest group that consists of 10 genes related to membrane trafficking and 7 out of 10 genes are ESCRT proteins which are involved in cargo transportation into luminal vesicles within the multivesicular body. All of the ESCRT related mutants which showed sodium resistance also showed defects in vacuole fusion. To further understand the role of the ESCRT pathway in various ion homeostasis, we examined sensitivity of these ESCRT mutants to various cation salts other than NaCl, including KCl, LiCl, CaCl2, CoCl2, MgCl2, NiSO4 and MnCl2. While these ESCRT mutants showed resistance to LiCl, CoCl2 and MgCl2, they showed sensitivity to KCl, CaCl2, NiSO4 and MnCl2. Then we examined sensitivity of these ESCRT mutants to various drugs which are known to inhibit the growth of fission yeast cells. While these ESCRT mutants were more or equally sensitive to most of the drugs tested as compared to the wild-type cells, they showed resistance to some drugs such as tamoxifen, fluorouracil and amiodarone. These results suggest that the ESCRT pathway plays important roles in drug/ion resistance of fission yeast.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Amiodarona/farmacologia , Calcineurina/metabolismo , Farmacorresistência Fúngica/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Genoma Fúngico , Mutação , Proteínas de Saccharomyces cerevisiae/genética , Tolerância ao Sal , Sais/farmacologia , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Cloreto de Sódio/farmacologia , Tamoxifeno/farmacologia
7.
Mol Med Rep ; 17(2): 2642-2650, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29207119

RESUMO

Enhancer of zeste homologue 2 (EZH2), a catalytic subunit of polycomb repressive complex 2, is overexpressed in a number of different tumors including breast cancer, and serves important roles in cell cycle regulation, proliferation, apoptosis, tumorigenesis and drug resistance. However, it remains unclear whether EZH2 contributes to tamoxifen resistance in breast cancer. In the present study, the role of EZH2 in tamoxifen resistance in MCF­7 cells was investigated. EZH2 was overexpressed in MCF­7 tamoxifen­resistant (MCF­7 TamR) cells. EZH2 overexpression decreased the sensitivity of MCF­7 cells to tamoxifen, and EZH2 knockdown improved the sensitivity of MCF­7 TamR cells to tamoxifen. Furthermore, EZH2 knockdown induced cell cycle arrest in MCF­7 TamR cells, accompanied by a decrease in cyclin D1 expression and an increase in p16 expression. EZH2 knockdown reduced p16 gene methylation in MCF­7 TamR cells. These findings suggested that EZH2 overexpression may contribute to tamoxifen resistance in breast cancer, and EZH2 inhibition may reverse tamoxifen resistance in breast cancer by regulating the cell cycle via the demethylation of the p16 gene. Thus, EZH2 inhibitors may be effective for treating tamoxifen resistance in breast cancer.


Assuntos
Antineoplásicos Hormonais/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Tamoxifeno/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA