Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814174

RESUMO

Neurexins play diverse functions as presynaptic organizers in various glutamatergic and GABAergic synapses. However, it remains unknown whether and how neurexins are involved in shaping functional properties of the glycinergic synapses, which mediate prominent inhibition in the brainstem and spinal cord. To address these issues, we examined the role of neurexins in a model glycinergic synapse between the principal neuron in the medial nucleus of the trapezoid body (MNTB) and the principal neuron in the lateral superior olive (LSO) in the auditory brainstem. Combining RNAscope with stereotactic injection of AAV-Cre in the MNTB of neurexin1/2/3 conditional triple knockout mice, we showed that MNTB neurons highly express all isoforms of neurexins although their expression levels vary remarkably. Selective ablation of all neurexins in MNTB neurons not only reduced the amplitude but also altered the kinetics of the glycinergic synaptic transmission at LSO neurons. The synaptic dysfunctions primarily resulted from an impaired Ca2+ sensitivity of release and a loosened coupling between voltage-gated Ca2+ channels and synaptic vesicles. Together, our current findings demonstrate that neurexins are essential in controlling the strength and temporal precision of the glycinergic synapse, which therefore corroborates the role of neurexins as key presynaptic organizers in all major types of fast chemical synapses.


Assuntos
Glicina , Camundongos Knockout , Corpo Trapezoide , Animais , Glicina/metabolismo , Camundongos , Corpo Trapezoide/metabolismo , Corpo Trapezoide/fisiologia , Transmissão Sináptica/fisiologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Complexo Olivar Superior/fisiologia , Complexo Olivar Superior/metabolismo , Tronco Encefálico/fisiologia , Tronco Encefálico/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neurexinas , Proteínas de Ligação ao Cálcio
2.
Front Synaptic Neurosci ; 14: 1023256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544543

RESUMO

Synapses are highly organized but are also highly diverse in their organization and properties to allow for optimizing the computing power of brain circuits. Along these lines, voltage-gated calcium (CaV) channels at the presynaptic active zone are heterogeneously organized, which creates a variety of calcium dynamics profiles that can shape neurotransmitter release properties of individual synapses. Extensive studies have revealed striking diversity in the subtype, number, and distribution of CaV channels, as well as the nanoscale topographic relationships to docked synaptic vesicles. Further, multi-protein complexes including RIMs, RIM-binding proteins, CAST/ELKS, and neurexins are required for coordinating the diverse organization of CaV channels at the presynaptic active zone. In this review, we highlight major advances in the studies of the functional organization of presynaptic CaV channels and discuss their physiological implications for synaptic transmission and short-term plasticity.

3.
FASEB J ; 35(10): e21944, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34569087

RESUMO

Information represented by principal neurons in anterior piriform cortex (APC) is regulated by local, recurrent excitation and inhibition, but the circuit mechanisms remain elusive. Two types of layer 2 (L2) principal neurons, semilunar (SL), and superficial pyramidal (SP) cells, are parallel output channels, and the control of their activity gates the output of APC. Here, we examined the hypothesis that recurrent inhibition differentially regulates SL and SP cells. Patterned optogenetic stimulation revealed that the strength of recurrent inhibition is target- and layer-specific: L1 > L3 for SL cells, but L3 > L1 for SP cells. This target- and layer-specific inhibition was largely attributable to the parvalbumin (PV), but not somatostatin, interneurons. Intriguingly, olfactory experience selectively modulated the PV to SP microcircuit while maintaining the overall target and laminar specificity of inhibition. Together, these results indicate the importance of target-specific inhibitory wiring for odor processing, implicating these mechanisms in gating the output of piriform cortex.


Assuntos
Inibição Neural , Vias Neurais , Córtex Piriforme/citologia , Córtex Piriforme/metabolismo , Animais , Feminino , Interneurônios/metabolismo , Masculino , Camundongos , Nariz , Odorantes/análise , Percepção Olfatória/fisiologia , Parvalbuminas/metabolismo , Olfato/fisiologia , Somatostatina , Transmissão Sináptica
4.
Front Pharmacol ; 9: 885, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30150936

RESUMO

The roots and rhizomes of Valeriana jatamansi have long been used as folk medicine in Asia and usually named as "Zhizhuxiang" in Chinese for the treatment of abdominal distention and pain. However, its active ingredients and molecular targets for treatment of abdominal pain remain unrevealed. Inhibitors of Cav2.2 N-type voltage-gated calcium channels (VGCCs) are actively sought after for their potential in treating pain, especially chronic pain. As far as we know, the method used for seeking analgesic active ingredient from plant material has rarely been reported. The analgesic potentials of the EtOH extract (0.01 mg/ml) of the roots and rhizomes of V. jatamansi and its EtOAc, n-BuOH and H2O soluble parts (0.01 mg/ml, respectively) were tested herein on Cav2.2, using whole-oocyte recordings in vitro by tow-electrode voltage clamp. The results indicated that the EtOAc-soluble part exhibited the most potent inhibition of Cav2.2 peak current (20 mv). The EtOAc-soluble part was then subjected to silica gel column chromatography (CC) and giving 9 fractions. Phytochemical studies were carried out by repeated CC and extensive spectroscopic analyses after the fraction (0.01 mg/ml) was identified to be active and got seventeen compounds (1-17). All isolates were then sent for further bioactive verification (1 and 3 at concentration of 10 µM, others at 30 µM). In addition, the selectivity of the active compounds 1 and 3 were tested on various ion channels including Cav1.2, Cav2.1 and Cav3.1 VGCCs and Kv1.2, Kv2.1, Kv3.1 and BK potassium channels. The results indicated that compound 1 and 3 (an abundant compound) inhibited Cav2.2 with an EC50 of 3.3 and 4.8 µM, respectively, and had weaker or no effect on Cav1.2, Cav2.1 and Cav3.1 VGCCs and Kv1.2, Kv2.1, Kv3.1 and BK potassium channels. Compounds 1 and 3 appear to act as allosteric modulators rather than pore blockers of Cav2.2, which may play crucial role in attenuating nociception. The results of present research indicated that the ethnopharmacological utilization of V. jatamansi for relieving the abdominal distention and pain may mediate through Cav2.2 channel. Our work is the first demonstration of inhibition of Cav2.2 by iridoids, which may provide a fresh source for finding new analgesics.

5.
Org Lett ; 17(12): 3082-5, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26024438

RESUMO

T-type calcium channel (TTCC) inhibitors hold great potential for the treatment of a variety of neurological disorders. Cochlearoids A-E (1-5), five pairs of dimeric meroterpenoid enantiomers, and cochlearines A (6) and B (7), two pairs of enantiomeric hybrid metabolites, were isolated and characterized from Ganoderma cochlear. Biological evaluation found that compounds (+)-1, (-)-3, and (±)-6 significantly inhibited Cav3.1 TTCC and showed noticeable selectivity against Cav1.2, Cav2.1, Cav2.2, and Kv11.1 (hERG) channels.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/química , Canais de Cálcio Tipo T/química , Ganoderma/química , Inibição Neural/efeitos dos fármacos , Terpenos/síntese química , Terpenos/farmacologia , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio Tipo T/metabolismo , Humanos , Estrutura Molecular , Inibição Neural/fisiologia , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...