Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Glob Health ; 13: 04126, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921040

RESUMO

Background: Retinal disorders cause substantial visual burden globally. Accurate estimates of the vision loss due to retinal diseases are pivotal to inform optimal eye health care planning and allocation of medical resources. The purpose of this study is to describe the proportion of visual impairment and blindness caused by major retinal diseases in China. Methods: A nationwide register-based study of vitreoretinal disease covering all 31 provinces (51 treating centres) of mainland China. A total of 28 320 adults diagnosed with retinal diseases were included. Participants underwent standardised ocular examinations, which included best-corrected visual acuity (BCVA), dilated-fundus assessments, and optical coherence tomography. Visual impairment and blindness are defined using BCVA according to the World Health Organization (WHO) (visual impairment: <20/63-≥20/400; blindness: <20/400) and the United States (visual impairment: <20/40-≥20/200; blindness: <20/200) definitions. The risk factors of vision loss were explored by logistic regression analyses. Results: Based on the WHO definitions, the proportions for unilateral visual impairment and blindness were 46% and 18%, respectively, whereas those for bilateral visual impairment and blindness were 31% and 3.3%, respectively. Diabetic retinopathy (DR) accounts for the largest proportion of patients with visual impairment (unilateral visual impairment: 32%, bilateral visual impairment: 60%) and blindness (unilateral blindness: 35%; bilateral blindness: 64%). Other retinal diseases that contributed significantly to vision loss included age-related macular degeneration, myopic maculopathy, retinal vein occlusion, and rhegmatogenous retinal detachment and other macular diseases. Women (bilateral vision loss: P = 0.011), aged patients (unilateral vision loss: 45-64 years: P < 0.001, ≥65 years: P < 0.001; bilateral vision loss: 45-64 years: P = 0.003, ≥65 years: P < 0.001 (reference: 18-44 years)) and those from Midwest China (unilateral and bilateral vision loss: both P < 0.001) were more likely to suffer from vision loss. Conclusions: Retinal disorders cause substantial visual burden among patients with retinal diseases in China. DR, the predominant retinal disease, is accountable for the most prevalent visual disabilities. Better control of diabetes and scaled-up screenings are warranted to prevent DR. Specific attention should be paid to women, aged patients, and less developed regions.


Assuntos
Retinopatia Diabética , Degeneração Macular , Doenças Retinianas , Baixa Visão , Pessoas com Deficiência Visual , Adulto , Humanos , Feminino , Idoso , Acuidade Visual , Cegueira/epidemiologia , Cegueira/etiologia , Baixa Visão/etiologia , Baixa Visão/complicações , Transtornos da Visão/etiologia , Transtornos da Visão/complicações , Doenças Retinianas/epidemiologia , Doenças Retinianas/complicações , Degeneração Macular/complicações , Degeneração Macular/epidemiologia , Prevalência
2.
Nat Commun ; 13(1): 206, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017522

RESUMO

Operation speed and coherence time are two core measures for the viability of a qubit. Strong spin-orbit interaction (SOI) and relatively weak hyperfine interaction make holes in germanium (Ge) intriguing candidates for spin qubits with rapid, all-electrical coherent control. Here we report ultrafast single-spin manipulation in a hole-based double quantum dot in a germanium hut wire (GHW). Mediated by the strong SOI, a Rabi frequency exceeding 540 MHz is observed at a magnetic field of 100 mT, setting a record for ultrafast spin qubit control in semiconductor systems. We demonstrate that the strong SOI of heavy holes (HHs) in our GHW, characterized by a very short spin-orbit length of 1.5 nm, enables the rapid gate operations we accomplish. Our results demonstrate the potential of ultrafast coherent control of hole spin qubits to meet the requirement of DiVincenzo's criteria for a scalable quantum information processor.

3.
Sci Bull (Beijing) ; 66(4): 332-338, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36654412

RESUMO

We develop a new spectroscopic method to quickly and intuitively characterize the coupling of two microwave-photon-coupled semiconductor qubits via a high-impedance resonator. Highly distinctive and unique geometric patterns are revealed as we tune the qubit tunnel couplings relative to the frequency of the mediating photons. These patterns are in excellent agreement with a simulation using the Tavis-Cummings model, and allow us to readily identify different parameter regimes for both qubits in the detuning space. This method could potentially be an important component in the overall spectroscopic toolbox for quickly characterizing certain collective properties of multiple cavity quantum electrodynamics (QED) coupled qubits.

4.
Phys Rev Lett ; 124(25): 257701, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639759

RESUMO

In silicon quantum dots (QDs), at a certain magnetic field commonly referred to as the "hot spot," the electron spin relaxation rate (T_{1}^{-1}) can be drastically enhanced due to strong spin-valley mixing. Here, we experimentally find that with a valley splitting of 78.2±1.6 µeV, this hot spot in spin relaxation can be suppressed by more than 2 orders of magnitude when the in-plane magnetic field is oriented at an optimal angle, about 9° from the [100] sample plane. This directional anisotropy exhibits a sinusoidal modulation with a 180° periodicity. We explain the magnitude and phase of this modulation using a model that accounts for both spin-valley mixing and intravalley spin-orbit mixing. The generality of this phenomenon is also confirmed by tuning the electric field and the valley splitting up to 268.5±0.7 µeV.

5.
Nanotechnology ; 30(46): 465302, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31426049

RESUMO

The silicon metal-oxide-semiconductor quantum dot architecture is a leading approach for the physical implementation of semiconductor quantum computing. One major challenge for scalable quantum dots is the presence of charge impurities. Electron-beam lithography (EBL), almost universally used to fabricate quantum dot devices, is known to create such defects at the Si/SiO2 interface. To eliminate the need for EBL, we have transferred the metal gate pattern of a quantum dot onto the silicon substrate using nano-imprint lithography. Critical features with 50 nm scale and separation can be dependably reproduced. By characterizing the bias-dependent charge transport through a quantum point contact barrier, the prevalence of impurities is found to be largely diminished in nano-imprinted devices when compared to similar electron-beam-written counterparts. High-quality charge transport and charge sensing of several quantum dots are obtained. Additionally, gate noise is measured with an average of 1.5 µeV Hz-1/2 equivalent to previous measurements made on devices fabricated with EBL, which suggests that the leading source of impurities produced by EBL are deep, fixed charges. This work offers a path toward reliable quantum dot operation in MOS by improving fabrication techniques to reduce charge impurities.

6.
Nat Commun ; 8(1): 64, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680042

RESUMO

Qubits based on silicon quantum dots are emerging as leading candidates for the solid-state implementation of quantum information processing. In silicon, valley states represent a degree of freedom in addition to spin and charge. Characterizing and controlling valley states is critical for the encoding and read-out of electrons-in-silicon-based qubits. Here, we report the coherent manipulation of a qubit, which is based on the two valley states of an electron confined in a silicon quantum dot. We carry out valley qubit operations at multiple charge configurations of the double quantum dot device. The dependence of coherent oscillations on pulse excitation level and duration allows us to map out the energy dispersion as a function of detuning as well as the phase coherence time of the valley qubit. The coherent manipulation also provides a method of measuring valley splittings that are too small to probe with conventional methods.Silicon quantum dots provide a promising platform for quantum computing based on manipulation of electron degrees of freedom in a well-characterized environment. Here, the authors demonstrate coherent control of electron valley states, yielding an accurate determination of the valley splitting.

7.
Nanotechnology ; 27(32): 324003, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27354414

RESUMO

Strong coupling between two qubits is one of the main requirements for high fidelity two-qubit logic operations. Here we experimentally investigate the capacitive coupling between two double quantum dots. A pair of open slot confinement gates is used to enhance the coupling. We find that the coupling energy J can be conveniently tuned in a broad range. Through numerical simulations, we study the effect of J on two-qubit operations. The analysis shows that our experimentally obtained J is adequate to achieve high fidelity two-qubit entanglement and logic gates.

8.
Nat Commun ; 7: 11259, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27052973

RESUMO

Microwave detectors based on the spin-torque diode effect are among the key emerging spintronic devices. By utilizing the spin of electrons in addition to charge, they have the potential to overcome the theoretical performance limits of their semiconductor (Schottky) counterparts. However, so far, practical implementations of spin-diode microwave detectors have been limited by the necessity to apply a magnetic field. Here, we demonstrate nanoscale magnetic tunnel junction microwave detectors, exhibiting high-detection sensitivity of 75,400 mV mW(-1) at room temperature without any external bias fields, and for low-input power (micro-Watts or lower). This sensitivity is significantly larger than both state-of-the-art Schottky diode detectors and existing spintronic diodes. Micromagnetic simulations and measurements reveal the essential role of injection locking to achieve this sensitivity performance. This mechanism may provide a pathway to enable further performance improvement of spin-torque diode microwave detectors.

9.
Phys Rev Lett ; 116(8): 086801, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26967435

RESUMO

We experimentally demonstrate a tunable hybrid qubit in a five-electron GaAs double quantum dot. The qubit is encoded in the (1,4) charge regime of the double dot and can be manipulated completely electrically. More importantly, dot anharmonicity leads to quasiparallel energy levels and a new anticrossing, which help preserve quantum coherence of the qubit and yield a useful working point. We have performed Larmor precession and Ramsey fringe experiments near the new working point and find that the qubit decoherence time is significantly improved over a charge qubit. This work shows a new way to encode a semiconductor qubit that is controllable and coherent.

10.
Phys Rev Lett ; 115(12): 126804, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26431005

RESUMO

We use an on-chip superconducting resonator as a sensitive meter to probe the properties of graphene double quantum dots at microwave frequencies. Specifically, we investigate the charge dephasing rates in a circuit quantum electrodynamics architecture. The dephasing rates strongly depend on the number of charges in the dots, and the variation has a period of four charges, over an extended range of charge numbers. Although the exact mechanism of this fourfold periodicity in dephasing rates is an open problem, our observations hint at the fourfold degeneracy expected in graphene from its spin and valley degrees of freedom.

11.
Nano Lett ; 15(10): 6620-5, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26327140

RESUMO

We fabricated a hybrid device with two distant graphene double quantum dots (DQDs) and a microwave resonator. A nonlinear response is observed in the resonator reflection amplitude when the two DQDs are jointly tuned to the vicinity of the degeneracy points. This observation can be well fitted by the Tavis-Cummings (T-C) model which describes two two-level systems coupling with one photonic field. Furthermore, the correlation between the DC currents in the two DQDs is studied. A nonzero cross-current correlation is observed which has been theoretically predicted to be an important sign of nonlocal coupling between two distant systems. Our results explore T-C physics in electronic transport and also contribute to the study of nonlocal transport and future implementations of remote electronic entanglement.

12.
Artigo em Chinês | MEDLINE | ID: mdl-26263794

RESUMO

OBJECTIVE: To understand the dynamics of schistosomiasis japonica in a national surveillance site in Honghu City, Hubei Province, China, so as to provide the evidence for formulating the intervention strategy of schistosomiasis control in the whole city. METHODS: The surveillance was performed in the surveillance village according to The National Surveillance Scheme of Schistosomiasis Japonica, and the results were analyzed statistically from 2005 to 2013. RESULTS: The schistosome infection rates in residents and cattle decreased from 1.76% and 20.93% in 2005 to 0 in 2013, respectively. The density of living Oncomelania snails decreased from 4.20/0.1m2 to 0.17/0.1m2, respectively. No infected snails were found during the period of 9 years in succession. The total area of snail control with molluscicidal drugs was 68.38 hm2 in the monitoring sites during the period of 9 years, and the expanded chemotherapy was performed for 634 person-times. Sixteen (person-time) advanced schistosomiasis patients received the treatment and salvation. The health education was carried out in 3 836 (person-times) students. Totally 5 685 leaflets of health education were distributed, and 17 bulletin boards of health education were performed. Five warning boards were set up at the environments with snails. CONCLUSIONS: The transmission of schistosomiasis in the surveillance site in Honghu City shows a gradually decreasing trend year by year. However, the surveillance and control of snails still should be strengthened.


Assuntos
Esquistossomose/prevenção & controle , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , China/epidemiologia , Humanos , Esquistossomose/epidemiologia , Esquistossomose/veterinária , Fatores de Tempo
13.
Nat Commun ; 6: 7681, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26184756

RESUMO

Universal multiple-qubit gates can be implemented by a set of universal single-qubit gates and any one kind of entangling two-qubit gate, such as a controlled-NOT gate. For semiconductor quantum dot qubits, two-qubit gate operations have so far only been demonstrated in individual electron spin-based quantum dot systems. Here we demonstrate the conditional rotation of two capacitively coupled charge qubits, each consisting of an electron confined in a GaAs/AlGaAs double quantum dot. Owing to the strong inter-qubit coupling strength, gate operations with a clock speed up to 6 GHz have been realized. A truth table measurement for controlled-NOT operation shows comparable fidelities to that of spin-based two-qubit gates, although phase coherence is not explicitly measured. Our results suggest that semiconductor charge qubits have a considerable potential for scalable quantum computing and may stimulate the use of long-range Coulomb interaction for coherent quantum control in other devices.

14.
Sci Rep ; 5: 8142, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25634250

RESUMO

Charge noise is critical in the performance of gate-controlled quantum dots (QDs). Such information is not yet available for QDs made out of the new material graphene, where both substrate and edge states are known to have important effects. Here we show the 1/f noise for a microscopic graphene QD is substantially larger than that for a macroscopic graphene field-effect transistor (FET), increasing linearly with temperature. To understand its origin, we suspended the graphene QD above the substrate. In contrast to large area graphene FETs, we find that a suspended graphene QD has an almost-identical noise level as an unsuspended one. Tracking noise levels around the Coulomb blockade peak as a function of gate voltage yields potential fluctuations of order 1 µeV, almost one order larger than in GaAs/GaAlAs QDs. Edge states and surface impurities rather than substrate-induced disorders, appear to dominate the 1/f noise, thus affecting the coherency of graphene nano-devices.

15.
Nat Commun ; 5: 3860, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24828846

RESUMO

Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.

16.
Sci Rep ; 3: 3175, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24213723

RESUMO

Graphene double quantum dots (DQDs) open to use charge or spin degrees of freedom for storing and manipulating quantum information in this new electronic material. However, impurities and edge disorders in etched graphene nano-structures hinder the ability to control the inter-dot tunnel coupling, tC, the most important property of the artificial molecule. Here we report measurements of tC in an all-metal-side-gated graphene DQD. We find that tC can be controlled continuously about a factor of four by employing a single gate. Furthermore, tC, can be changed monotonically about another factor of four as electrons are gate-pumped into the dot one by one. The results suggest that the strength of tunnel coupling in etched graphene DQDs can be varied in a rather broad range and in a controllable manner, which improves the outlook to use graphene as a base material for qubit applications.

17.
Phys Rev Lett ; 111(12): 126803, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24093289

RESUMO

A quantum point contact was used to observe single-electron fluctuations of a quantum dot in a GaAs heterostructure. The resulting random telegraph signals (RTS) contain statistical information about the electron spin state if the tunneling dynamics are spin dependent. We develop a statistical method to extract information about spin-dependent dynamics from RTS and use it to demonstrate that these dynamics can be studied in the thermal energy regime. The tunneling rates of each spin state are independently measured in a finite external magnetic field. We confirm previous findings of a decrease in overall tunneling rates for the spin excited state compared to the ground state as an external magnetic field is increased.

18.
Sci Rep ; 3: 1426, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23478390

RESUMO

The spin-transfer nano-oscillator (STNO) offers the possibility of using the transfer of spin angular momentum via spin-polarized currents to generate microwave signals. However, at present STNO microwave emission mainly relies on both large drive currents and external magnetic fields. These issues hinder the implementation of STNOs for practical applications in terms of power dissipation and size. Here, we report microwave measurements on STNOs built with MgO-based magnetic tunnel junctions having a planar polarizer and a perpendicular free layer, where microwave emission with large output power, excited at ultralow current densities, and in the absence of any bias magnetic fields is observed. The measured critical current density is over one order of magnitude smaller than previously reported. These results suggest the possibility of improved integration of STNOs with complementary metal-oxide-semiconductor technology, and could represent a new route for the development of the next-generation of on-chip oscillators.

19.
Nanoscale ; 5(6): 2219-31, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23400008

RESUMO

The use of spin transfer nano-oscillators (STNOs) to generate microwave signals in nanoscale devices has aroused tremendous and continuous research interest in recent years. Their key features are frequency tunability, nanoscale size, broad working temperature, and easy integration with standard silicon technology. In this feature article, we give an overview of recent developments and breakthroughs in the materials, geometry design and properties of STNOs. We focus in more depth on our latest advances in STNOs with perpendicular anisotropy, showing a way to improve the output power of STNO towards the µW range. Challenges and perspectives of the STNOs that might be productive topics for future research are also briefly discussed.

20.
Nat Commun ; 4: 1401, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23360992

RESUMO

A basic requirement for quantum information processing is the ability to universally control the state of a single qubit on timescales much shorter than the coherence time. Although ultrafast optical control of a single spin has been achieved in quantum dots, scaling up such methods remains a challenge. Here we demonstrate complete control of the quantum-dot charge qubit on the picosecond scale [corrected], orders of magnitude faster than the previously measured electrically controlled charge- or spin-based qubits. We observe tunable qubit dynamics in a charge-stability diagram, in a time domain, and in a pulse amplitude space of the driven pulse. The observations are well described by Landau-Zener-Stückelberg interference. These results establish the feasibility of a full set of all-electrical single-qubit operations. Although our experiment is carried out in a solid-state architecture, the technique is independent of the physical encoding of the quantum information and has the potential for wider applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...