Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 73: 103216, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38820983

RESUMO

Long-lived lens fiber cells require a robust cellular protective function against oxidative insults to maintain their hemostasis and viability; however, the underlying mechanism is largely obscure. In this study, we unveiled a new mechanism that protects lens fiber cells against oxidative stress-induced cell death. We found that mechano-activated connexin (Cx) hemichannels (HCs) mediate the transport of glutathione (GSH) into chick embryonic fibroblasts (CEF) and primary lens fiber cells, resulting in a decrease in the accumulation of intracellular reactive oxygen species induced by both H2O2 and ultraviolet B, providing protection to lens fiber cells against cell apoptosis and necrosis. Furthermore, HCs formed by both homomeric Cx50 or Cx46 and heteromeric Cx50/Cx46 were mechanosensitive and could transport GSH into CEF cells. Notably, mechano-activated Cx50 HCs exhibited a greater capacity to transport GSH than Cx46 HCs. Consistently, the deficiency of Cx50 in single lens fiber cells led to a higher level of oxidative stress. Additionally, outer cortical short lens fiber cells expressing full length Cxs demonstrated greater resistance to oxidative injury compared to central core long lens fibers. Taken together, our results suggest that the activation of Cx HCs by interstitial fluid flow in cultured epithelial cells and isolated fiber cells shows that HCs can serve as a pathway for moving GSH across the cell membrane to offer protection against oxidative stress.

2.
iScience ; 27(4): 109469, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577101

RESUMO

The extracellular superoxide dismutases (ecSODs) secreted by Microplitis bicoloratus reduce the reactive oxygen species (ROS) stimulated by the Microplitis bicoloratus bracovirus. Here, we demonstrate that the bacterial transferase hexapeptide (hexapep) motif and bacterial-immunoglobulin-like (BIg-like) domain of ecSODs bind to the cell membrane and transiently open hemichannels, facilitating ROS reductions. RNAi-mediated ecSOD silencing in vivo elevated ROS in host hemocytes, impairing parasitoid larva development. In vitro, the ecSOD-monopolymer needed to be membrane bound to open hemichannels. Furthermore, the hexapep motif in the beta-sandwich of ecSOD49 and ecSOD58, and BIg-like domain in the signal peptides of ecSOD67 were required for cell membrane binding. Hexapep motif and BIg-like domain deletions induced ecSODs loss of adhesion and ROS reduction failure. The hexapep motif and BIg-like domain mediated ecSOD binding via upregulating innexins and stabilizing the opened hemichannels. Our findings reveal a mechanism through which ecSOD reduces ROS, which may aid in developing anti-redox therapy.

3.
Methods Mol Biol ; 2801: 111-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578417

RESUMO

Connexin hemichannels (Cx HCs) are hexameric structures at the cell plasma membrane, whose function as membrane transport proteins allows for the passive flow of small hydrophilic molecules and ions (≤1 kDa) between the cytosol and the extracellular environment. Activation of Cx HCs is highly dependent on pathological conditions. HC activity provokes changes in the microenvironment, inducing the dissemination of signaling molecules in both an autocrine and paracrine manner. Given the elicitation of a variety of signaling pathways, and assortment of Cx species and dispersion throughout the body, Cx HCs have been implicated in a range of processes such as cell proliferation, differentiation, cell death, and tissue modeling and remodeling. While studying the expression and localization of Cx HCs can be done using traditional laboratory techniques, such as immunoblot analysis, measuring the functionality/activity of the HCs requires a more explicit methodology and is essential for determining Cx-mediated physiological changes. The study of Cx HC function/activity has focused mainly on in vitro measurements through electrophysiological characterization or, more commonly, using HC-permeable dye uptake studies. Here, we describe the use of dye uptake to measure Cx HC activity in vivo using mechanically stimulated osteocytic Cx43 HCs with Evans blue dye as our model.


Assuntos
Conexinas , Transdução de Sinais , Conexinas/metabolismo , Membrana Celular/metabolismo , Fenômenos Eletrofisiológicos
4.
Nat Commun ; 14(1): 8273, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092736

RESUMO

Adult tissue-resident macrophages (RMs) are either maintained by blood monocytes or through self-renewal. While the presence of a nurturing niche is likely crucial to support the survival and function of self-renewing RMs, evidence regarding its nature is limited. Here, we identify fibro-adipogenic progenitors (FAPs) as the main source of colony-stimulating factor 1 (CSF1) in resting skeletal muscle. Using parabiosis in combination with FAP-deficient transgenic mice (PdgfrαCreERT2 × DTA) or mice lacking FAP-derived CSF1 (PdgfrαCreERT2 × Csf1flox/null), we show that local CSF1 from FAPs is required for the survival of both TIM4- monocyte-derived and TIM4+ self-renewing RMs in adult skeletal muscle. The spatial distribution and number of TIM4+ RMs coincide with those of dipeptidyl peptidase IV (DPPIV)+ FAPs, suggesting their role as CSF1-producing niche cells for self-renewing RMs. This finding identifies opportunities to precisely manipulate the function of self-renewing RMs in situ to further unravel their role in health and disease.


Assuntos
Dipeptidil Peptidase 4 , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Camundongos , Animais , Diferenciação Celular/fisiologia , Dipeptidil Peptidase 4/genética , Adipogenia , Músculo Esquelético , Camundongos Transgênicos , Macrófagos
5.
Biomolecules ; 13(12)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38136665

RESUMO

Fibrosis initially appears as a normal response to damage, where activated fibroblasts produce large amounts of the extracellular matrix (ECM) during the wound healing process to assist in the repair of injured tissue. However, the excessive accumulation of the ECM, unresolved by remodeling mechanisms, leads to organ dysfunction. Connexins, a family of transmembrane channel proteins, are widely recognized for their major roles in fibrosis, the epithelial-mesenchymal transition (EMT), and wound healing. Efforts have been made in recent years to identify novel mediators and targets for this regulation. Connexins form gap junctions and hemichannels, mediating communications between neighboring cells and inside and outside of cells, respectively. Recent evidence suggests that connexins, beyond forming channels, possess channel-independent functions in fibrosis, the EMT, and wound healing. One crucial channel-independent function is their role as the primary functional component for cell adhesion. Other channel-independent functions of connexins involve their roles in mitochondria and exosomes. This review summarizes the latest advances in the channel-dependent and independent roles of connexins in fibrosis, the EMT, and wound healing, with a particular focus on eye diseases, emphasizing their potential as novel, promising therapeutic targets.


Assuntos
Conexinas , Junções Comunicantes , Humanos , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Transição Epitelial-Mesenquimal , Fibrose , Proteínas de Membrana/metabolismo , Cicatrização
6.
Bioelectricity ; 5(3): 164-172, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37746311

RESUMO

Mutations of lens connexins are linked to congenital cataracts. However, the role of connexin mutations in the development of age-related lens opacification remains largely unknown. Here, we present a focused review of the literature on lens organization and factors associated with cataract development. Several lines of evidence indicate that disturbances of the lens circulation by dysfunctional connexin channels, and/or accumulation of protein damage due to oxidative stress, are key factors in cataract development. Phosphorylation by protein kinase A improves the permeability of connexins channels to small molecules and mitigates the lens clouding induced by oxidative stress. We conclude (1) that connexin channels are central to the lens circulation and (2) that their permeability to antioxidant molecules contributes to the maintenance of lens transparency.

7.
STAR Protoc ; 4(4): 102564, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37738121

RESUMO

Connexins (Cxs) play a crucial role in maintaining lens transparency. Here, we present a protocol for altering Cx hemichannel (HC) function in primary chicken lens fiber cells using high-titer retroviral replication competent avian sarcoma-leukosis virus long terminal repeat with splice acceptor (A) infection. We describe steps for incubating eggs, isolating lenses, culturing cells, preparing reagents, and infecting cells. We then detail cell treatment and detection of apoptosis and death. This protocol can assess protein kinase A, HC activity, and increased glutathione transport for protecting lens fiber cells against oxidative stress. For complete details on the use and execution of this protocol, please refer to Liu et al.,1 Riquelme et al.,2 Shi et al.,3 Jiang,4 and Rath et al.5.


Assuntos
Conexinas , Cristalino , Animais , Conexinas/genética , Conexinas/metabolismo , Galinhas , Retroviridae/genética , Retroviridae/metabolismo , Cristalino/metabolismo , Epitélio/metabolismo
8.
J Vis Exp ; (199)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37677003

RESUMO

Embryonic chicken (Gallus domesticus) is a well-established animal model for the study of lens development and physiology, given its high degree of similarity with the human lens. RCAS(A) is a replication-competent chicken retrovirus that infects dividing cells, which serves as a powerful tool to study the in situ expression and function of wild-type and mutant proteins during lens development by microinjection into the empty lumen of lens vesicle at early developmental stages, restricting its action to surrounding proliferating lens cells. Compared to other approaches, such as transgenic models and ex vivo cultures, the use of an RCAS(A) replication-competent avian retrovirus provides a highly effective, rapid, and customizable system to express exogenous proteins in chick embryos. Specifically, targeted gene transfer can be confined to proliferative lens fiber cells without the need for tissue-specific promoters. In this article, we will briefly overview the steps needed for recombinant retrovirus RCAS(A) preparation, provide a detailed, comprehensive overview of the microinjection procedure, and provide sample results of the technique.


Assuntos
Cristalino , Lentes , Embrião de Galinha , Animais , Humanos , Galinhas , Microinjeções , Retroviridae/genética
9.
Cells ; 12(17)2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37681882

RESUMO

Recently, mesenchymal stem cell (MSC) therapies have been questioned as MSCs are capable of both promoting and inhibiting tumorigenesis. Both MSCs and tumor cells replicate to increase their population size; however, MSCs, but not tumor cells, stop dividing when they reach confluence due to cell-cell contact inhibition and then differentiate. We hypothesized that contact inhibition results in the production of effector molecules by confluent MSCs and these effectors are capable of suppressing tumor cell growth. To test this hypothesis, we co-cultured breast cancer cells (MDA-MB-231) with either confluent or sub-confluent bone-marrow-derived MSCs (BM-MSCs); in addition, we treated various tumor cells with conditioned media (CM) obtained from either confluent or sub-confluent BM-MSCs. The results showed that the growth of tumor cells co-cultured with confluent BM-MSCs or treated with CM obtained from confluent BM-MSCs was inhibited, and this effect was significantly stronger than that seen with tumor cells co-cultured with sub-confluent BM-MSCs or CM obtained from sub-confluent BM-MSCs. Subcutaneous tumor formation was completely prevented by the inoculation of tumor cells mixed with CM. In the future, soluble anti-tumor effectors, produced by confluent MSCs, may be used as cell-free therapeutics; this approach provides a solution to current concerns associated with cell-based therapies.


Assuntos
Células-Tronco Mesenquimais , Neoplasias , Humanos , Inibição de Contato , Carcinogênese , Ciclo Celular , Meios de Cultivo Condicionados/farmacologia
10.
Immunity ; 56(7): 1561-1577.e9, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37402364

RESUMO

Hypodermis is the predominant site of Staphylococcus aureus infections that cause cellulitis. Given the importance of macrophages in tissue remodeling, we examined the hypodermal macrophages (HDMs) and their impact on host susceptibility to infection. Bulk and single-cell transcriptomics uncovered HDM subsets with CCR2-dichotomy. HDM homeostasis required the fibroblast-derived growth factor CSF1, ablation of which abrogated HDMs from the hypodermal adventitia. Loss of CCR2- HDMs resulted in accumulation of the extracellular matrix component, hyaluronic acid (HA). HDM-mediated HA clearance required sensing by the HA receptor, LYVE-1. Cell-autonomous IGF1 was required for accessibility of AP-1 transcription factor motifs that controlled LYVE-1 expression. Remarkably, loss of HDMs or IGF1 limited Staphylococcus aureus expansion via HA and conferred protection against cellulitis. Our findings reveal a function for macrophages in the regulation of HA with an impact on infection outcomes, which may be harnessed to limit the establishment of infection in the hypodermal niche.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/fisiologia , Celulite (Flegmão)/metabolismo , Macrófagos/metabolismo , Matriz Extracelular
11.
Front Cell Dev Biol ; 11: 1151838, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123401

RESUMO

Bone adapts to changes in the physical environment by modulating remodeling through bone resorption and formation to maintain optimal bone mass. As the most abundant connexin subtype in bone tissue, connexin 43 (Cx43)-forming hemichannels are highly responsive to mechanical stimulation by permitting the exchange of small molecules (<1.2 kDa) between bone cells and the extracellular environment. Upon mechanical stimulation, Cx43 hemichannels facilitate the release of prostaglandins E2 (PGE2), a vital bone anabolic factor from osteocytes. Although most bone cells are involved in mechanosensing, osteocytes are the principal mechanosensitive cells, and PGE2 biosynthesis is greatly enhanced by mechanical stimulation. Mechanical stimulation-induced PGE2 released from osteocytic Cx43 hemichannels acts as autocrine effects that promote ß-catenin nuclear accumulation, Cx43 expression, gap junction function, and protects osteocytes against glucocorticoid-induced osteoporosis in cultured osteocytes. In vivo, Cx43 hemichannels with PGE2 release promote bone formation and anabolism in response to mechanical loading. This review summarizes current in vitro and in vivo understanding of Cx43 hemichannels and extracellular PGE2 release, and their roles in bone function and mechanical responses. Cx43 hemichannels could be a significant potential new therapeutic target for treating bone loss and osteoporosis.

12.
Elife ; 122023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779851

RESUMO

M-CSF is a critical growth factor for myeloid lineage cells, including monocytes, macrophages, and osteoclasts. Tissue-resident macrophages in most organs rely on local M-CSF. However, it is unclear what specific cells in the bone marrow produce M-CSF to maintain myeloid homeostasis. Here, we found that Adipoq-lineage progenitors but not mature adipocytes in bone marrow or in peripheral adipose tissue, are a major cellular source of M-CSF, with these Adipoq-lineage progenitors producing M-CSF at levels much higher than those produced by osteoblast lineage cells. The Adipoq-lineage progenitors with high CSF1 expression also exist in human bone marrow. Deficiency of M-CSF in bone marrow Adipoq-lineage progenitors drastically reduces the generation of bone marrow macrophages and osteoclasts, leading to severe osteopetrosis in mice. Furthermore, the osteoporosis in ovariectomized mice can be significantly alleviated by the absence of M-CSF in bone marrow Adipoq-lineage progenitors. Our findings identify bone marrow Adipoq-lineage progenitors as a major cellular source of M-CSF in bone marrow and reveal their crucial contribution to bone marrow macrophage development, osteoclastogenesis, bone homeostasis, and pathological bone loss.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Osteogênese , Camundongos , Humanos , Animais , Fator Estimulador de Colônias de Macrófagos/metabolismo , Medula Óssea , Diferenciação Celular , Macrófagos/metabolismo , Osteoclastos/metabolismo , Células da Medula Óssea/metabolismo , Camundongos Endogâmicos C57BL , Adiponectina/metabolismo
13.
Elife ; 122023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779854

RESUMO

Colony-stimulating factor 1 (Csf1) is an essential growth factor for osteoclast progenitors and an important regulator for bone resorption. It remains elusive which mesenchymal cells synthesize Csf1 to stimulate osteoclastogenesis. We recently identified a novel mesenchymal cell population, marrow adipogenic lineage precursors (MALPs), in bone. Compared to other mesenchymal subpopulations, MALPs expressed Csf1 at a much higher level and this expression was further increased during aging. To investigate its role, we constructed MALP-deficient Csf1 CKO mice using AdipoqCre. These mice had increased femoral trabecular bone mass, but their cortical bone appeared normal. In comparison, depletion of Csf1 in the entire mesenchymal lineage using Prrx1Cre led to a more striking high bone mass phenotype, suggesting that additional mesenchymal subpopulations secrete Csf1. TRAP staining revealed diminished osteoclasts in the femoral secondary spongiosa region of Csf1 CKOAdipoq mice, but not at the chondral-osseous junction nor at the endosteal surface of cortical bone. Moreover, Csf1 CKOAdipoq mice were resistant to LPS-induced calvarial osteolysis. Bone marrow cellularity, hematopoietic progenitors, and macrophages were also reduced in these mice. Taken together, our studies demonstrate that MALPs synthesize Csf1 to control bone remodeling and hematopoiesis.


Assuntos
Medula Óssea , Osteoclastos , Camundongos , Animais , Osteoclastos/metabolismo , Medula Óssea/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Osso e Ossos/metabolismo , Hematopoese
14.
iScience ; 26(3): 106114, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36852280

RESUMO

Cataract is the leading cause of blindness worldwide. Here, we reported a potential, effective therapeutic mean for cataract prevention and treatment. Gap junction communication, an important mechanism in maintaining lens transparency, is increased by protein kinase A (PKA). We found that PKA activation reduced cataracts induced by oxidative stress, increased gap junctions/hemichannels in connexin (Cx) 50, Cx46 or Cx50 and Cx46 co-expressing cells, and decreased reactive oxygen species (ROS) levels. However, ROS reduction was shown in wild-type, Cx46 and Cx50 knockout, but not in Cx46/Cx50 double KO lens. In addition, PKA activation protects lens fiber cell death induced by oxidative stress via hemichannel-mediated glutathione transport. Connexin deletion increased lens opacity induced by oxidative stress associated with reduction of anti-oxidative stress gene expression. Together, our results suggest that PKA activation through increased connexin channels in lens fiber cell decreases ROS levels and cell death, leading to alleviated cataracts.

15.
J Biol Chem ; 299(3): 102965, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36736424

RESUMO

Connexin (Cx)-forming channels play essential roles in maintaining lens homeostasis and transparency. We showed here channel-independent roles of Cx50 in cell-cell adhesion and confirmed the second extracellular (E2) domain as a critical domain for cell adhesion function. We found that cell adhesion decreased in cells expressing chimeric Cx50 in which the E2 domain was swapped with the E2 domain of either Cx43 or Cx46. In contrast, adhesion increased in cells expressing chimeric Cx43 and Cx46 with the Cx50 (E2) domain. This function is Cx channel-independent and Cx50 E2 domain-dependent cell adhesion acting in both homotypic and heterotypic manners. In addition, we generated eight site mutations of unique residues between Cx50 and the other two lens Cxs and found that mutation of any one of the residues abolished the adhesive function. Moreover, expression of adhesive-impaired mutants decreased adhesion-related proteins, N-cadherin and ß-catenin. Expression of the adhesion-impaired Cx50W188P mutant in embryonic chick lens caused enlarged extracellular spaces, distorted fiber organization, delayed nuclear condensation, and cortical cataracts. In summary, the results from both in vitro and in vivo studies demonstrate the importance of the adhesive function of Cx50 in the lens.


Assuntos
Adesão Celular , Conexinas , Cristalino , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular , Conexinas/metabolismo , Proteínas do Olho/metabolismo , Junções Comunicantes/metabolismo , Cristalino/metabolismo , Caderinas/metabolismo
16.
Cell Biosci ; 12(1): 191, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457052

RESUMO

BACKGROUND: Mechanical loading promotes bone formation and osteocytes are a major mechanosensory cell in the bone. Both Piezo1 channels and connexin 43 hemichannels (Cx43 HCs) in osteocytes are important players in mechanotransduction and anabolic function by mechanical loading. However, the mechanism underlying mechanotransduction involving Piezo1 channels and Cx43 HCs in osteocytes and bone remains unknown. RESULTS: We showed that, like mechanical loading, Piezo1 specific agonist Yoda1 was able to increase intracellular Ca2+ signaling and activate Cx43 HCs, while Yoda1 antagonist Dooku1 inhibited Ca2+ and Cx43 HC activation induced by both mechanical loading and Yoda1. Moreover, the intracellular Ca2+ signal activated by Yoda1 was reduced by the inhibition of Cx43 HCs and pannexin1 (Panx1) channels, as well as ATP-P2X receptor signaling. Piezo1 and Cx43 HCs were co-localized on the osteocyte cell surface, and Yoda1-activated PI3K-Akt signaling regulated the opening of Cx43 HCs. Furthermore, Cx43 HCs opening by mechanical loading on tibias was ablated by inhibition of Piezo1 activation in vivo. CONCLUSION: We demonstrated that upon mechanical stress, increased intracellular Ca2+ activated by Piezo1 regulates the opening of HCs through PI3K-Akt and opened Cx43 HCs, along with Panx1 channels, and ATP-P2X signaling sustain the intracellular Ca2+ signal, leading to bone anabolic function.

17.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362291

RESUMO

Osteoporosis and sarcopenia (termed "Osteosarcopenia"), the twin-aging diseases, are major contributors to reduced bone mass and muscle weakness in the elderly population. Connexin 43 (Cx43) in osteocytes has been previously reported to play vital roles in bone homeostasis and muscle function in mature mice. The Cx43-formed gap junctions (GJs) and hemichannels (HCs) in osteocytes are important portals for the exchange of small molecules in cell-to-cell and cell-to-extracellular matrix, respectively. However, the roles of Cx43-based GJs and HCs in both bone and muscle aging are still unclear. Here, we used two transgenic mouse models with overexpression of the dominant negative Cx43 mutants primarily in osteocytes driven by the 10-kb Dmp1 promoter, R76W mice (inhibited gap junctions but enhanced hemichannels) and Δ130-136 mice (both gap junction and hemichannels are inhibited), to determine the actions of Cx43-based hemichannels (HCs) and gap junctions (GJs) in the regulation of bone and skeletal muscle from aged mice (18 months) as compared with those from adult mice (10 months). We demonstrated that enhancement of Cx43 HCs reduces bone mass due to increased osteoclast surfaces while the impairment of Cx43 HCs increases osteocyte apoptosis in aged mice caused by reduced PGE2 levels. Furthermore, altered mitochondrial homeostasis with reduced expression of Sirt-1, OPA-1, and Drp-1 resulted in excessive ROS level in muscle soleus (SL) of aged transgenic mice. In vitro, the impairment of Cx43 HCs in osteocytes from aged mice also promoted muscle collagen synthesis through activation of TGFß/smad2/3 signaling because of reduced PGE2 levels in the PO CM. These findings indicate that the enhancement of Cx43 HCs while GJs are inhibited reduces bone mass, and the impairment of Cx43 HCs inhibits PGE2 level in osteocytes and this reduction promotes muscle collagen synthesis in skeletal muscle through activation of TGFß/smad2/3 signaling, which together with increased ROS level contributes to reduced muscle force in aged mice.


Assuntos
Conexina 43 , Osteócitos , Animais , Masculino , Camundongos , Colágeno/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Dinoprostona/metabolismo , Junções Comunicantes/metabolismo , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Osteócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo
18.
Elife ; 112022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36346745

RESUMO

Oxidative stress is a major risk factor that causes osteocyte cell death and bone loss. Prior studies primarily focus on the function of cell surface expressed Cx43 channels. Here, we reported a new role of mitochondrial Cx43 (mtCx43) and hemichannels (HCs) in modulating mitochondria homeostasis and function in bone osteocytes under oxidative stress. In murine long bone osteocyte-Y4 cells, the translocation of Cx43 to mitochondria was increased under H2O2-induced oxidative stress. H2O2 increased the mtCx43 level accompanied by elevated mtCx43 HC activity, determined by dye uptake assay. Cx43 knockdown (KD) by the CRISPR-Cas9 lentivirus system resulted in impairment of mitochondrial function, primarily manifested as decreased ATP production. Cx43 KD had reduced intracellular reactive oxidative species levels and mitochondrial membrane potential. Additionally, live-cell imaging results demonstrated that the proton flux was dependent on mtCx43 HCs because its activity was specifically inhibited by an antibody targeting Cx43 C-terminus. The co-localization and interaction of mtCx43 and ATP synthase subunit F (ATP5J2) were confirmed by Förster resonance energy transfer and a protein pull-down assay. Together, our study suggests that mtCx43 HCs regulate mitochondrial ATP generation by mediating K+, H+, and ATP transfer across the mitochondrial inner membrane and the interaction with mitochondrial ATP synthase, contributing to the maintenance of mitochondrial redox levels in response to oxidative stress.


Assuntos
Conexina 43 , Peróxido de Hidrogênio , Camundongos , Animais , Conexina 43/genética , Conexina 43/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Homeostase , Trifosfato de Adenosina/metabolismo
19.
Front Med (Lausanne) ; 9: 965429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186774

RESUMO

Bone metastasis is a common and devastating consequence of several major cancer types, including breast and prostate. Osteocytes are the predominant bone cell, and through connexin (Cx) 43 hemichannels release ATP to the bone microenvironment that can be hydrolyzed to adenosine. Here, we investigated how genes related to ATP paracrine signaling are involved in two common bone-metastasizing malignancies, estrogen receptor positive (ER+) breast and prostate cancers. Compared to other sites, bone metastases of both cancer types expressed higher levels of ENTPD1 and NT5E, which encode CD39 and CD73, respectively, and hydrolyze ATP to adenosine. ADORA3, encoding the adenosine A3 receptor, had a similar expression pattern. In primary ER+ breast cancer, high levels of the triplet ENTPD1/NT5E/ADORA3 expression signature was correlated with lower overall, distant metastasis-free, and progression-free survival. In ER+ bone metastasis biopsies, this expression signature is associated with lower survival. This expression signature was also higher in bone-metastasizing primary prostate cancers than in those that caused other tumor events or did not lead to progressive disease. In 3D culture, a non-hydrolyzable ATP analog inhibited the growth of breast and prostate cancer cell lines more than ATP did. A3 inhibition also reduced spheroid growth. Large-scale screens by the Drug Repurposing Hub found ER+ breast cancer cell lines were uniquely sensitive to adenosine receptor antagonists. Together, these data suggest a vital role for extracellular ATP degradation and adenosine receptor signaling in cancer bone metastasis, and this study provides potential diagnostic means for bone metastasis and specific targets for treatment and prevention.

20.
Front Immunol ; 13: 882706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911693

RESUMO

Hemichannels (HCs)/gap junctions (GJs) and immunoglobulin (Ig)-like domain-containing proteins (IGLDCPs) are involved in the innate-adaptive immune response independently. Despite of available evidence demonstrating the importance of HCs/GJs and IGLDCPs in initiating, implementing, and terminating the entire immune response, our understanding of their mutual interactions in immunological function remains rudimentary. IGLDCPs include immune checkpoint molecules of the immunoglobulin family expressed in T and B lymphocytes, most of which are cluster of differentiation (CD) antigens. They also constitute the principal components of the immunological synapse (IS), which is formed on the cell surface, including the phagocytic synapse, T cell synapse, B cell synapse, and astrocytes-neuronal synapse. During the three stages of the immune response, namely innate immunity, innate-adaptive immunity, and adaptive immunity, HCs/GJs and IGLDCPs are cross-activated during the entire process. The present review summarizes the current understanding of HC-released immune signaling factors that influence IGLDCPs in regulating innate-adaptive immunity. ATP-induced "eat me" signals released by HCs, as well as CD31, CD47, and CD46 "don't eat me" signaling molecules, trigger initiation of innate immunity, which serves to regulate phagocytosis. Additionally, HC-mediated trogocytosis promotes antigen presentation and amplification. Importantly, HC-mediated CD4+ T lymphocyte activation is critical in the transition of the innate immune response to adaptive immunity. HCs also mediate non-specific transcytosis of antibodies produced by mature B lymphocytes, for instance, IgA transcytosis in ovarian cancer cells, which triggers innate immunity. Further understanding of the interplay between HCs/GJs and IGLDCPs would aid in identifying therapeutic targets that regulate the HC-Ig-like domain immune response, thereby providing a viable treatment strategy for immunological diseases. The present review delineates the clinical immunology-related applications of HC-Ig-like domain cross-activation, which would greatly benefit medical professionals and immunological researchers alike. HCs/GJs and IGLDCPs mediate phagocytosis via ATP; "eat me and don't eat me" signals trigger innate immunity; HC-mediated trogocytosis promotes antigen presentation and amplification in innate-adaptive immunity; HCs also mediate non-specific transcytosis of antibodies produced by mature B lymphocytes in adaptive immunity.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Trifosfato de Adenosina , Antígenos CD , Junções Comunicantes , Domínios de Imunoglobulina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...