Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 30(11): 1794-1805, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37845412

RESUMO

Organic anion transporters (OATs) of the SLC22 family have crucial roles in the transport of organic anions, including metabolites and therapeutic drugs, and in transporter-mediated drug-drug interactions. In the kidneys, OATs facilitate the elimination of metabolic waste products and xenobiotics. However, their transport activities can lead to the accumulation of certain toxic compounds within cells, causing kidney damage. Moreover, OATs are important drug targets, because their inhibition modulates the elimination or retention of substrates linked to diseases. Despite extensive research on OATs, the molecular basis of their substrate and inhibitor binding remains poorly understood. Here we report the cryo-EM structures of rat OAT1 (also known as SLC22A6) and its complexes with para-aminohippuric acid and probenecid at 2.1, 2.8 and 2.9 Å resolution, respectively. Our findings reveal a highly conserved substrate binding mechanism for SLC22 transporters, wherein four aromatic residues form a cage to accommodate the polyspecific binding of diverse compounds.


Assuntos
Proteína 1 Transportadora de Ânions Orgânicos , Transportadores de Ânions Orgânicos , Ratos , Animais , Proteína 1 Transportadora de Ânions Orgânicos/metabolismo , Microscopia Crioeletrônica , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Rim/metabolismo
2.
Nature ; 622(7982): 410-417, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758949

RESUMO

The Kv2.1 voltage-activated potassium (Kv) channel is a prominent delayed-rectifier Kv channel in the mammalian central nervous system, where its mechanisms of activation and inactivation are critical for regulating intrinsic neuronal excitability1,2. Here we present structures of the Kv2.1 channel in a lipid environment using cryo-electron microscopy to provide a framework for exploring its functional mechanisms and how mutations causing epileptic encephalopathies3-7 alter channel activity. By studying a series of disease-causing mutations, we identified one that illuminates a hydrophobic coupling nexus near the internal end of the pore that is critical for inactivation. Both functional and structural studies reveal that inactivation in Kv2.1 results from dynamic alterations in electromechanical coupling to reposition pore-lining S6 helices and close the internal pore. Consideration of these findings along with available structures for other Kv channels, as well as voltage-activated sodium and calcium channels, suggests that related mechanisms of inactivation are conserved in voltage-activated cation channels and likely to be engaged by widely used therapeutics to achieve state-dependent regulation of channel activity.


Assuntos
Ativação do Canal Iônico , Mutação , Canais de Potássio Shab , Animais , Humanos , Microscopia Crioeletrônica , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico/genética , Canais de Potássio Shab/genética , Canais de Potássio Shab/metabolismo , Canais de Potássio Shab/ultraestrutura , Espasmos Infantis/genética
3.
Commun Biol ; 5(1): 1372, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517642

RESUMO

Anion exchanger 1 (AE1, band 3) is a major membrane protein of red blood cells and plays a key role in acid-base homeostasis, urine acidification, red blood cell shape regulation, and removal of carbon dioxide during respiration. Though structures of the transmembrane domain (TMD) of three SLC4 transporters, including AE1, have been resolved previously in their outward-facing (OF) state, no mammalian SLC4 structure has been reported in the inward-facing (IF) conformation. Here we present the cryoEM structures of full-length bovine AE1 with its TMD captured in both IF and OF conformations. Remarkably, both IF-IF homodimers and IF-OF heterodimers were detected. The IF structures feature downward movement in the core domain with significant unexpected elongation of TM11. Molecular modeling and structure guided mutagenesis confirmed the functional significance of residues involved in TM11 elongation. Our data provide direct evidence for an elevator-like mechanism of ion transport by an SLC4 family member.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito , Proteínas de Membrana Transportadoras , Bovinos , Animais , Proteína 1 de Troca de Ânion do Eritrócito/genética , Proteína 1 de Troca de Ânion do Eritrócito/química , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Microscopia Crioeletrônica , Domínios Proteicos , Transporte de Íons
4.
Cell ; 185(20): 3739-3752.e18, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36113465

RESUMO

Lysosomal amino acid efflux by proton-driven transporters is essential for lysosomal homeostasis, amino acid recycling, mTOR signaling, and maintaining lysosomal pH. To unravel the mechanisms of these transporters, we focus on cystinosin, a prototypical lysosomal amino acid transporter that exports cystine to the cytosol, where its reduction to cysteine supplies this limiting amino acid for diverse fundamental processes and controlling nutrient adaptation. Cystinosin mutations cause cystinosis, a devastating lysosomal storage disease. Here, we present structures of human cystinosin in lumen-open, cytosol-open, and cystine-bound states, which uncover the cystine recognition mechanism and capture the key conformational states of the transport cycle. Our structures, along with functional studies and double electron-electron resonance spectroscopic investigations, reveal the molecular basis for the transporter's conformational transitions and protonation switch, show conformation-dependent Ragulator-Rag complex engagement, and demonstrate an unexpected activation mechanism. These findings provide molecular insights into lysosomal amino acid efflux and a potential therapeutic strategy.


Assuntos
Cistina , Prótons , Sistemas de Transporte de Aminoácidos/metabolismo , Cisteína/metabolismo , Cistina/metabolismo , Humanos , Lisossomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo
5.
Sci Adv ; 8(11): eabm7814, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302848

RESUMO

Voltage-activated potassium (Kv) channels open upon membrane depolarization and proceed to spontaneously inactivate. Inactivation controls neuronal firing rates and serves as a form of short-term memory and is implicated in various human neurological disorders. Here, we use high-resolution cryo-electron microscopy and computer simulations to determine one of the molecular mechanisms underlying this physiologically crucial process. Structures of the activated Shaker Kv channel and of its W434F mutant in lipid bilayers demonstrate that C-type inactivation entails the dilation of the ion selectivity filter and the repositioning of neighboring residues known to be functionally critical. Microsecond-scale molecular dynamics trajectories confirm that these changes inhibit rapid ion permeation through the channel. This long-sought breakthrough establishes how eukaryotic K+ channels self-regulate their functional state through the plasticity of their selectivity filters.

6.
Dev Cell ; 57(5): 670-685.e8, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35231446

RESUMO

The dually lipidated Sonic hedgehog (SHH) morphogen signals through the tumor suppressor membrane protein Patched1 (PTCH1) to activate the Hedgehog pathway, which is fundamental in development and cancer. SHH engagement with PTCH1 requires the GAS1 coreceptor, but the mechanism is unknown. We demonstrate a unique role for GAS1, catalyzing SHH-PTCH1 complex assembly in vertebrate cells by direct SHH transfer from the extracellular SCUBE2 carrier to PTCH1. Structure of the GAS1-SHH-PTCH1 transition state identifies how GAS1 recognizes the SHH palmitate and cholesterol modifications in modular fashion and how it facilitates lipid-dependent SHH handoff to PTCH1. Structure-guided experiments elucidate SHH movement from SCUBE2 to PTCH1, explain disease mutations, and demonstrate that SHH-induced PTCH1 dimerization causes its internalization from the cell surface. These results define how the signaling-competent SHH-PTCH1 complex assembles, the key step triggering the Hedgehog pathway, and provide a paradigm for understanding morphogen reception and its regulation.


Assuntos
Proteínas Hedgehog , Receptor Patched-1 , Transdução de Sinais , Catálise , Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Relação Estrutura-Atividade
7.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34452994

RESUMO

The generation of α-synuclein (α-syn) truncations from incomplete proteolysis plays a significant role in the pathogenesis of Parkinson's disease. It is well established that C-terminal truncations exhibit accelerated aggregation and serve as potent seeds in fibril propagation. In contrast, mechanistic understanding of N-terminal truncations remains ill defined. Previously, we found that disease-related C-terminal truncations resulted in increased fibrillar twist, accompanied by modest conformational changes in a more compact core, suggesting that the N-terminal region could be dictating fibril structure. Here, we examined three N-terminal truncations, in which deletions of 13-, 35-, and 40-residues in the N terminus modulated both aggregation kinetics and fibril morphologies. Cross-seeding experiments showed that out of the three variants, only ΔN13-α-syn (14‒140) fibrils were capable of accelerating full-length fibril formation, albeit slower than self-seeding. Interestingly, the reversed cross-seeding reactions with full-length seeds efficiently promoted all but ΔN40-α-syn (41-140). This behavior can be explained by the unique fibril structure that is adopted by 41-140 with two asymmetric protofilaments, which was determined by cryogenic electron microscopy. One protofilament resembles the previously characterized bent ß-arch kernel, comprised of residues E46‒K96, whereas in the other protofilament, fewer residues (E61‒D98) are found, adopting an extended ß-hairpin conformation that does not resemble other reported structures. An interfilament interface exists between residues K60‒F94 and Q62‒I88 with an intermolecular salt bridge between K80 and E83. Together, these results demonstrate a vital role for the N-terminal residues in α-syn fibril formation and structure, offering insights into the interplay of α-syn and its truncations.


Assuntos
Amiloide/biossíntese , alfa-Sinucleína/fisiologia , Acetilação , Amiloide/ultraestrutura , Domínio Catalítico , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Proteólise , alfa-Sinucleína/química
8.
Mol Cell ; 81(4): 801-810.e3, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33385326

RESUMO

DNA-dependent protein kinase (DNA-PK), like all phosphatidylinositol 3-kinase-related kinases (PIKKs), is composed of conserved FAT and kinase domains (FATKINs) along with solenoid structures made of HEAT repeats. These kinases are activated in response to cellular stress signals, but the mechanisms governing activation and regulation remain unresolved. For DNA-PK, all existing structures represent inactive states with resolution limited to 4.3 Å at best. Here, we report the cryoelectron microscopy (cryo-EM) structures of DNA-PKcs (DNA-PK catalytic subunit) bound to a DNA end or complexed with Ku70/80 and DNA in both inactive and activated forms at resolutions of 3.7 Å overall and 3.2 Å for FATKINs. These structures reveal the sequential transition of DNA-PK from inactive to activated forms. Most notably, activation of the kinase involves previously unknown stretching and twisting within individual solenoid segments and loosens DNA-end binding. This unprecedented structural plasticity of helical repeats may be a general regulatory mechanism of HEAT-repeat proteins.


Assuntos
Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA/química , Autoantígeno Ku/química , Complexos Multiproteicos/química , Microscopia Crioeletrônica , Proteína Quinase Ativada por DNA/genética , Ativação Enzimática , Células HEK293 , Células HeLa , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura
9.
Commun Biol ; 3(1): 676, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168926

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Autophagy ; 16(12): 2292-2293, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33016201

RESUMO

ATG9, the only transmembrane protein in the core macroautophagy/autophagy machinery, is a key player in the early stages of autophagosome formation. Yet, the lack of a high-resolution structure of ATG9 was a major impediment in understanding its three-dimensional organization and function. We recently solved a high-resolution cryoEM structure of the ubiquitously expressed human ATG9A isoform. The structure revealed that ATG9A is a domain-swapped homotrimer with a unique fold, and has an internal network of branched cavities. In cellulo analyses demonstrated the functional importance of the cavity-lining residues. These cavities could serve as conduits for transport of hydrophilic moieties, such as lipid headgroups, across the bilayer. Finally, structure-guided molecular dynamics predicted that ATG9A has membrane-bending properties, which is consistent with its localization to highly curved membranes.


Assuntos
Autofagia , Bicamadas Lipídicas , Proteínas Relacionadas à Autofagia , Humanos , Proteínas de Membrana , Proteínas de Transporte Vesicular
11.
Structure ; 28(8): 871-873, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755568

RESUMO

In this issue of Structure, Zhou et al. report the structures of full-length lethal and edema factors, the cytotoxic components of the deadly anthrax toxin, in complex with the toxin's cell binding and delivery module, the protective antigen prechannel, providing an atomic description for the toxin recruitment prior to translocation.


Assuntos
Antraz , Toxinas Bacterianas , Antígenos de Bactérias , Microscopia Crioeletrônica , Edema , Humanos
12.
Cell Rep ; 31(13): 107837, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32610138

RESUMO

Autophagy is a catabolic process involving capture of cytoplasmic materials into double-membraned autophagosomes that subsequently fuse with lysosomes for degradation of the materials by lysosomal hydrolases. One of the least understood components of the autophagy machinery is the transmembrane protein ATG9. Here, we report a cryoelectron microscopy structure of the human ATG9A isoform at 2.9-Å resolution. The structure reveals a fold with a homotrimeric domain-swapped architecture, multiple membrane spans, and a network of branched cavities, consistent with ATG9A being a membrane transporter. Mutational analyses support a role for the cavities in the function of ATG9A. In addition, structure-guided molecular simulations predict that ATG9A causes membrane bending, explaining the localization of this protein to small vesicles and highly curved edges of growing autophagosomes.


Assuntos
Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Proteínas Relacionadas à Autofagia/ultraestrutura , Microscopia Crioeletrônica , Células HEK293 , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Proteínas de Membrana/ultraestrutura , Simulação de Dinâmica Molecular , Mutagênese/genética , Fosfatidilcolinas/química , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas de Transporte Vesicular/ultraestrutura
13.
Nat Commun ; 11(1): 3290, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620929

RESUMO

In mitochondria, ß-barrel outer membrane proteins mediate protein import, metabolite transport, lipid transport, and biogenesis. The Sorting and Assembly Machinery (SAM) complex consists of three proteins that assemble as a 1:1:1 complex to fold ß-barrel proteins and insert them into the mitochondrial outer membrane. We report cryoEM structures of the SAM complex from Myceliophthora thermophila, which show that Sam50 forms a 16-stranded transmembrane ß-barrel with a single polypeptide-transport-associated (POTRA) domain extending into the intermembrane space. Sam35 and Sam37 are located on the cytosolic side of the outer membrane, with Sam35 capping Sam50, and Sam37 interacting extensively with Sam35. Sam35 and Sam37 each adopt a GST-like fold, with no functional, structural, or sequence similarity to their bacterial counterparts. Structural analysis shows how the Sam50 ß-barrel opens a lateral gate to accommodate its substrates.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Detergentes/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Conformação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Sordariales/genética , Sordariales/metabolismo
14.
Commun Biol ; 2: 358, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31602407

RESUMO

The TonB-ExbB-ExbD molecular motor harnesses the proton motive force across the bacterial inner membrane to couple energy to transporters at the outer membrane, facilitating uptake of essential nutrients such as iron and cobalamine. TonB physically interacts with the nutrient-loaded transporter to exert a force that opens an import pathway across the outer membrane. Until recently, no high-resolution structural information was available for this unique molecular motor. We published the first crystal structure of ExbB-ExbD in 2016 and showed that five copies of ExbB are arranged as a pentamer around a single copy of ExbD. However, our spectroscopic experiments clearly indicated that two copies of ExbD are present in the complex. To resolve this ambiguity, we used single-particle cryo-electron microscopy to show that the ExbB pentamer encloses a dimer of ExbD in its transmembrane pore, and not a monomer as previously reported. The revised stoichiometry has implications for motor function.


Assuntos
Proteínas de Escherichia coli/química , Microscopia Crioeletrônica , Escherichia coli , Proteínas de Escherichia coli/ultraestrutura , Modelos Moleculares , Estrutura Molecular
15.
J Mol Biol ; 431(19): 3913-3919, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31295458

RESUMO

Lewy bodies, hallmarks of Parkinson's disease, contain C-terminally truncated (ΔC) α-synuclein (α-syn). Here, we report fibril structures of three N-terminally acetylated (Ac) α-syn constructs, Ac1-140, Ac1-122, and Ac1-103, solved by cryoelectron microscopy. Both ΔC-α-syn variants exhibited faster aggregation kinetics, and Ac1-103 fibrils efficiently seeded the full-length protein, highlighting their importance in pathogenesis. Interestingly, fibril helical twists increased upon the removal of C-terminal residues and can be propagated through cross-seeding. Compared to that of Ac1-140, increased electron densities were seen in the N-terminus of Ac1-103, whereas the C-terminus of Ac1-122 appeared more structured. In accord, the respective termini of ΔC-α-syn exhibited increased protease resistance. Despite similar amyloid core residues, distinctive features were seen for both Ac1-122 and Ac1-103. Particularly, Ac1-103 has the tightest packed core with an additional turn, likely attributable to conformational changes in the N-terminal region. These molecular differences offer insights into the effect of C-terminal truncations on α-syn fibril polymorphism.


Assuntos
Mutação/genética , Doença de Parkinson/genética , alfa-Sinucleína/química , alfa-Sinucleína/genética , Amiloide/ultraestrutura , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , alfa-Sinucleína/ultraestrutura
16.
Cell ; 173(5): 1179-1190.e13, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775593

RESUMO

Telomerase is an RNA-protein complex (RNP) that extends telomeric DNA at the 3' ends of chromosomes using its telomerase reverse transcriptase (TERT) and integral template-containing telomerase RNA (TER). Its activity is a critical determinant of human health, affecting aging, cancer, and stem cell renewal. Lack of atomic models of telomerase, particularly one with DNA bound, has limited our mechanistic understanding of telomeric DNA repeat synthesis. We report the 4.8 Å resolution cryoelectron microscopy structure of active Tetrahymena telomerase bound to telomeric DNA. The catalytic core is an intricately interlocked structure of TERT and TER, including a previously structurally uncharacterized TERT domain that interacts with the TEN domain to physically enclose TER and regulate activity. This complete structure of a telomerase catalytic core and its interactions with telomeric DNA from the template to telomere-interacting p50-TEB complex provides unanticipated insights into telomerase assembly and catalytic cycle and a new paradigm for a reverse transcriptase RNP.


Assuntos
DNA/metabolismo , Telomerase/metabolismo , Telômero/metabolismo , Tetrahymena thermophila/metabolismo , Domínio Catalítico , Microscopia Crioeletrônica , DNA/química , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Complexo Shelterina , Fosfatase Ácida Resistente a Tartarato/metabolismo , Telomerase/química , Telômero/química , Proteínas de Ligação a Telômeros , Tetrahymena thermophila/enzimologia
17.
Nat Commun ; 9(1): 1495, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643343

RESUMO

The originally published version of this Article contained several errors in Figure 2, panel a: the basepair register in SL3-4 of yeast U1 snRNA was depicted incorrectly; the basepair for A287-U295 in yeast U1 snRNA was erroneously present; basepairs for U84-G119, G309-U532, A288-U295 and U289-A294 in yeast U1 snRNA were missing; the bulging nucleotide in SL3 of human U1 snRNA was depicted as G instead of C; and the dashed boxes defining the 5' ss binding site and Sm site in both human and yeast snRNAs were not drawn accurately. These have now been corrected in both the PDF and HTML versions of the Article.

18.
Biochemistry ; 57(16): 2325-2334, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29608861

RESUMO

Pyruvate dehydrogenase complex (PDC) is a large multienzyme complex that catalyzes the irreversible conversion of pyruvate to acetyl-coenzyme A with reduction of NAD+. Distinctive from PDCs in lower forms of life, in mammalian PDC, dihydrolipoyl acetyltransferase (E2; E2p in PDC) and dihydrolipoamide dehydrogenase binding protein (E3BP) combine to form a complex that plays a central role in the organization, regulation, and integration of catalytic reactions of PDC. However, the atomic structure and organization of the mammalian E2p/E3BP heterocomplex are unknown. Here, we report the structure of the recombinant dodecahedral core formed by the C-terminal inner-core/catalytic (IC) domain of human E2p determined at 3.1 Å resolution by cryo electron microscopy (cryoEM). The structure of the N-terminal fragment and four other surface areas of the human E2p IC domain exhibit significant differences from those of the other E2 crystal structures, which may have implications for the integration of E3BP in mammals. This structure also allowed us to obtain a homology model for the highly homologous IC domain of E3BP. Analysis of the interactions of human E2p or E3BP with their adjacent IC domains in the dodecahedron provides new insights into the organization of the E2p/E3BP heterocomplex and suggests a potential contribution by E3BP to catalysis in mammalian PDC.


Assuntos
Di-Hidrolipoamida Desidrogenase/química , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/química , Piruvato Desidrogenase (Lipoamida)/química , Complexo Piruvato Desidrogenase/química , Sequência de Aminoácidos/genética , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Catálise , Domínio Catalítico/genética , Microscopia Crioeletrônica , Di-Hidrolipoamida Desidrogenase/genética , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/genética , Humanos , Conformação Proteica , Piruvato Desidrogenase (Lipoamida)/genética , Complexo Piruvato Desidrogenase/genética
19.
Nat Commun ; 9(1): 900, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500354

RESUMO

Na+-coupled acid-base transporters play essential roles in human biology. Their dysfunction has been linked to cancer, heart, and brain disease. High-resolution structures of mammalian Na+-coupled acid-base transporters are not available. The sodium-bicarbonate cotransporter NBCe1 functions in multiple organs and its mutations cause blindness, abnormal growth and blood chemistry, migraines, and impaired cognitive function. Here, we have determined the structure of the membrane domain dimer of human NBCe1 at 3.9 Å resolution by cryo electron microscopy. Our atomic model and functional mutagenesis revealed the ion accessibility pathway and the ion coordination site, the latter containing residues involved in human disease-causing mutations. We identified a small number of residues within the ion coordination site whose modification transformed NBCe1 into an anion exchanger. Our data suggest that symporters and exchangers utilize comparable transport machinery and that subtle differences in their substrate-binding regions have very significant effects on their transport mode.


Assuntos
Ácidos/metabolismo , Álcalis/metabolismo , Simportadores de Sódio-Bicarbonato/ultraestrutura , Sódio/metabolismo , Transporte Biológico , Microscopia Crioeletrônica , Fenômenos Eletrofisiológicos , Humanos , Troca Iônica , Íons , Modelos Moleculares , Simportadores de Sódio-Bicarbonato/química
20.
Science ; 358(6368): 1278-1283, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29146870

RESUMO

The spliceosome undergoes dramatic changes in a splicing cycle. Structures of B, Bact, C, C*, and intron lariat spliceosome complexes revealed mechanisms of 5'-splice site (ss) recognition, branching, and intron release, but lacked information on 3'-ss recognition, exon ligation, and exon release. Here we report a cryo-electron microscopy structure of the postcatalytic P complex at 3.3-angstrom resolution, revealing that the 3' ss is mainly recognized through non-Watson-Crick base pairing with the 5' ss and branch point. Furthermore, one or more unidentified proteins become stably associated with the P complex, securing the 3' exon and potentially regulating activity of the helicase Prp22. Prp22 binds nucleotides 15 to 21 in the 3' exon, enabling it to pull the intron-exon or ligated exons in a 3' to 5' direction to achieve 3'-ss proofreading or exon release, respectively.


Assuntos
RNA Helicases DEAD-box/química , Complexos Multienzimáticos/química , Fatores de Processamento de RNA/química , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U5/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Spliceossomos/química , Pareamento de Bases , Biocatálise , Domínio Catalítico , Microscopia Crioeletrônica , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/ultraestrutura , Éxons , Íntrons , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/ultraestrutura , Mutação , Conformação Proteica , Sítios de Splice de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/ultraestrutura , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U4-U6/ultraestrutura , Ribonucleoproteína Nuclear Pequena U5/genética , Ribonucleoproteína Nuclear Pequena U5/ultraestrutura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Spliceossomos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...