Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(4): e2306159, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38044305

RESUMO

The infertile electromagnetic (EM) attenuating behavior of carbon material makes the improvement of its performance remain a significant challenge. Herein, a facile and low-cost strategy radically distinct from the prevalent approaches by constructing polar covalent bonds between sp2 -hybridized and sp3 -hybridized carbon atoms to introduce strong dipolar polarization is proposed. Through customizing and selectively engineering the N moieties conjugated with carbon rings, the microstructure of the as-synthesized 2D nanosheet is gradually converted with the partial transition from sp3 carbons to sp2 carbons, where the electric dipoles between them are also tuned. Supported by the DFT calculations, a progressively enhanced sp2 ─sp3 C─C dipolar polarization is caused by this controllable structure evolution, which is demonstrated to contribute dominantly to the total dielectric loss. By virtue of this unduplicated loss behavior, a remarkable effective absorption bandwidth (EAB) beyond -10 dB of 8.28 GHz (2.33 mm) and an ultrawide EAB beyond -5 dB of 13.72 GHz (4.93 mm) are delivered, which upgrade the EM performance of carbon material to a higher level. This study not only demonstrates the huge perspective of sp2 ─sp3 -hybridized carbon in EM elimination but also gives pioneering insights into the carbon-carbon polarization mechanism for guiding the development of advanced EM absorption materials.

2.
Opt Express ; 31(11): 18039-18049, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37381522

RESUMO

In this paper, residual stress and plastic deformation of TC4 titanium alloys and AA7075 aluminum alloys after laser shock peening (LSP) with the laser pulses that have the same energy and peak intensity but different time profiles have been studied. The results show that the time profile of the laser pulse has a significant influence on LSP. The difference between the results of LSP with varying laser input mode has been contributed to the shock wave caused by different laser pulse. In LSP, the laser pulse with a positive-slope triangular time profile could induce a more intense and deeper residual stress distribution in metal targets. Residual stress distribution changing with laser time profiles suggests that shaping the laser time profile is a potential residual stress control strategy for LSP. This paper comprises the first step of this strategy.

3.
Front Chem ; 10: 805252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836680

RESUMO

The alkali mercerizing process of semicrystalline cotton fiber (CF) is widely used in the printing and dyeing industry. The crystallinity change in the mercerizing process has been studied and certain laws have been obtained, but there is still a certain distance between the theoretical research results and the practical applications. CF is almost composed of cellulose, combined with the photoluminescence (PL) phenomenon of cellulose; herein, the varying crystallinity is correlated with its PL behavior after being treated with different concentrations of NaOH. In line with the characteristics of nonconventional luminogens, CF enjoys excitation-dependent emission and persistent room temperature phosphorescence (p-RTP) behavior. The emission spectra of all samples under the same excitation wavelength indicate that the change of CF crystallinity has a significant impact on its fluorescence and p-RTP emission. As the concentration of NaOH increases, the varying trend of quantum efficiency (QY) is consistent with the changed crystallinity of CF. Interestingly, the lifetime of p-RTP is exactly the opposite of the crystallinity change law. Clustering-triggered emission (CTE), crystallization-Induced Phosphorescence (CIP) mechanism, and the swelling due to hydrated sodium ions can reasonably explain these interesting photophysical processes, which also can be supported by theoretical calculations. The above studies have basically clarified the inherent law between the crystalline change of CF and the PL emission behavior during the alkali treatment process, which can be used as a theoretical reference for real-time monitoring of CF crystallinity changes using the spectral method in the actual cotton mercerizing process.

4.
Macromol Rapid Commun ; 42(17): e2100321, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34254396

RESUMO

Nonconventional luminogens with persistent room temperature phosphoresce (p-RTP) are attracting increasing attention owing to their momentous significance and diverse technical applications in optoelectronic and biomedical. So far, the p-RTP emission of some amorphous powders or single crystals has been studied in depth. The p-RTP emission of amorphous and fully crystalline states and their emission properties are widely divergent, while the difference of their p-RTP emission mechanism is still controversial. The relevance between crystallinity change and p-RTP properties is rarely studied. Furthermore, there is almost no research on the photoluminescence (PL) property change and emission mechanism under the crystal form transformation of semi-crystalline polymer. Herein, microcrystalline cellulose (MCC) is chosen as a model compound to explore its crystallinity and the change in luminescence during the crystal form transformation to make up for this gap. By precisely adjusting the crystallinity and crystal cellulose conversion of MCC, the changing trend of quantum efficiency, and p-RTP lifetime is consistent with the change of crystallinity, and the cellulose I may be more beneficial to PL emission than cellulose II. Clustering-triggered emission mechanism can reasonably explain these interesting photophysical processes, which also can be supported by single-crystal analysis and theoretical calculations.


Assuntos
Celulose , Luminescência
5.
Materials (Basel) ; 14(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070292

RESUMO

The quench-induced precipitation and subsequent aging response in 2A97 aluminum alloy was investigated based on the systematic microstructure characterization. Specifically, the influence on precipitation from grain structure was examined. The results indicated the evident influence from the cooling rate of the quenching process. Precipitation of T1 and δ' phase can hardly occur in the specimen exposed to water quenching while become noticeable in the case of air cooling. The yield strength of 2A97-T6 alloy de-graded by 234 MPa along with a comparable elongation when water quenching was replaced by air cooling. Sub-grains exhibited a much higher sensitivity to the precipitation during quenching. The presence of dislocations in sub-grains promoted the quench-induced precipitation by acting as nucleation sites and enhancing the diffusion of the solute. A quenching rate of 3 °C/s is tolerable for recrystallized grains in 2A97 Al alloy but is inadequate for sub-grains to inhibit precipitation. The study fosters the feasibility of alleviating quench-induced precipitation through cultivating the recrystallization structure in highly alloyed Al-Cu-Li alloys.

6.
Materials (Basel) ; 14(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919347

RESUMO

The influence of pre-stretch on the mechanical properties of 2219 Al alloys sheets were systematically investigated, with the aim of examining the age-strengthening in parts draw-formed from as-quenched sheets. The precipitation was characterized based on differential scanning calorimetry (DSC) analysis and transmission electron microscope (TEM) observation of specimens of as-quenched and quenched-stretched condition to address the influence of pre-stretching. A tensile test was performed to evaluate the effect on mechanical properties. The introduction of pre-stretching endues increased yield strength (YS) and thus can be helpful to exert the potential of the alloy. Peak YS of 387.5 and 376.8 MPa are obtained when specimens pre-stretched for 10% are aged at 150 and 170 °C, respectively, much higher than that obtained in the non-stretched specimens (319.2 MPa). The precipitation of Guinier-Preston zone (G.P. zones) and the transition to θ″ shifts to a lower temperature when pre-stretched is performed. The high density of dislocations developed during the stretching contributes to the acceleration in precipitation. Quench-stretched specimens present a much quicker age-hardening response at the beginning stage, which endue higher peaked yield strength. The yield strength, however, decrease much more quickly due to the recovery that occurs during the aging processes. The study suggested the feasibility of aging draw-formed components of 2219 Al alloy to obtain high strength.

7.
RSC Adv ; 11(51): 32383-32393, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35495505

RESUMO

An excellent heterojunction structure is vital for the improvement of photocatalytic performance. In this study, BiOCl/MIL-100(Fe) hybrid composites were prepared via a one-pot coprecipitation method for the first time. The prepared materials were characterized and then used as a photo-Fenton catalyst for the removal of organic pollutants in wastewater. The BiOCl/MIL-100(Fe) hybrid exhibited better photo-Fenton activity than MIL-100(Fe) and BiOCl for RhB degradation; in particular, the hybrid with 50% Bi molar concentration showed the highest efficiency. The excellent performance can be ascribed to the presence of coordinatively unsaturated iron centers, abundant Lewis acid sites, fast H2O2 activation, and efficient carrier separation on BiOCl nanosheets due to the high charge carrier mobility of the nanosheets. The photo-Fenton mechanism was studied, and the results indicated that ˙OH and h+ were the main active species for organic pollutant degradation. The coprecipitation-based hybridization approach presented in this paper opens up an avenue for the sustainable fabrication of photo-Fenton catalysts with abundant coordinatively unsaturated metal centers and efficient electron-hole separation capacity.

8.
Polymers (Basel) ; 12(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322455

RESUMO

This study developed a versatile and facile method for creating pores and tuning the porous structure in the polymer latex films by selectively etching the added functional polyvinyl pyrrolidone (PVP) molecules. The pore formed in the latex films had a similar morphology to that of PVP aggregation before etching. This observation promotes us to regulate the pore morphology that determines the film's property, such as air permeability through varying the PVP molecule weight and dosage. To this end, the effects of PVP molecule weight and dosage on the pore formation were systematically studied. The results showed that the average pore size of porous film decreased from >10 µm to sub-micron (about 0.4 µm) as the molecular weight or the dosage of PVP increased. This was ascribed to the strong adsorption affinity of PVP molecule onto the latex particle surface, which further hindered the diffusion and self-assembly of PVP molecule. In addition, this interaction became much stronger when the higher molecule weight of PVP or the higher dosage of PVP was employed, leading to the decreased size of PVP aggregation, as well as the formed pores in the latex films. Furthermore, the addition of PVP had little effect on the color of coated fabric based on the results of CIE L*a*b* measurement. The proposed facile method can be used to improve the air permeability of coated fabrics.

9.
J Colloid Interface Sci ; 561: 687-695, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785935

RESUMO

The poor dispersity and oxidation resistance of ferromagnetic metal nanoparticles can induce serious deterioration in electromagnetic properties, which then significantly limits the application of this catalog of materials. In this work, sandwich-like Co/rGo/Co composites were in situ constructed, in which monodispersed Co nanoparticles with diameters of 20-60 nm were densely dispersed on both sides of rGO nanosheets. A connecting network between the densely-packed Co nanoparticles can be formed, where Co nanoparticles are abutted or bridged to each other through a neck of Co. These sandwich-like composites evidently contributed to improved permittivity and permeability, which was ascribed to the enhanced interface polarization and exchange coupling in this Co nanoparticles densely-packed structure. A maximum reflection loss (RLmax) of -61 dB (at 11.1 GHz) together with an efficient absorbing bandwidth (RL < -10 dB, ERL10) of 4 GHz was obtained at a very thin matching thickness of 2 mm. The coating also presented a potential double-band absorbing performance, at SC band and Ku band, respectively. The excellent electromagnetic absorbing performances were ascribed to the synergistic effect of multiple dielectric losses and ferromagnetic losses. The sandwich-like Co/rGO/Co composites proposed an alternative way for broadband and high-efficiency absorption and provided a typical structure to analyze the loss mechanisms.

10.
Nanotechnology ; 29(30): 305604, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-29738313

RESUMO

SiO2 and TiO2, as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe-CoFe2O4@C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe2O4 matrix via an in situ reduction transformation from CoFe2O4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max) of -71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5) and high RL max are observed in both S-C and X-Ku bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.

11.
Materials (Basel) ; 11(5)2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29751493

RESUMO

A non-isothermal ageing process was proposed for an Al-Zn-Mg-Cu alloy aiming to accommodate the slow heating/cooling procedure during the ageing of large components. The evolution of microstructure and microchemistry was analyzed by using transmission electron microscopy, high-angle annular dark field imaging, and energy dispersive spectrometry. The age-hardening of the alloy was examined to evaluate the strengthening behavior during the non-isothermal process. The corrosion behavior was investigated via observing the specimens immersed in EXCO solution (solution for Exfoliation Corrosion Susceptibility test in 2xxx and 7xxx series aluminum alloys, referring ASTM G34-01). Secondary precipitation was observed during the cooling stage, leading to increased precipitate number density. The distribution of grain boundary precipitates transits from discontinuous to continuous at the cooling stage, due to the secondary precipitation’s linking-up effect. The solutes’ enrichment on grain boundary precipitates and the depletion in precipitate-free zones develops during the heating procedure, but remains invariable during the cooling procedure. The corrosion in NIA (Non-isothermal Ageing) treated specimens initiates from pitting and then transits to intergranular corrosion and exfoliation corrosion. The transition from pitting to intergranular corrosion is very slow for specimens heated to 190 °C, but accelerates slightly as the cooling procedure proceeds. The transition to exfoliation corrosion is observed to be quite slow in all specimens in non-isothermal aged to over-aged condition, suggesting a corrosion resistance comparable to that of RRA condition.

12.
Sci Rep ; 8(1): 3196, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453359

RESUMO

Core-shell particles with integration of ferromagnetic core and dielectric shell are attracting extensive attention for promising microwave absorption applications. In this work, CoNi microspheres with conical bulges were synthesized by a simple and scalable liquid-phase reduction method. Subsequent coating of dielectric materials was conducted to acquire core-shell structured CoNi@TiO2 composite particles, in which the thickness of TiO2 is about 40 nm. The coating of TiO2 enables the absorption band of CoNi to effectively shift from Ku to S band, and endows CoNi@TiO2 microspheres with outstanding electromagnetic wave absorption performance along with a maximum reflection loss of 76.6 dB at 3.3 GHz, much better than that of bare CoNi microspheres (54.4 dB at 17.8 GHz). The enhanced EMA performance is attributed to the unique core-shell structures, which can induce dipole polarization and interfacial polarization, and tune the dielectric properties to achieve good impedance matching. Impressively, TiO2 coating endows the composites with better microwave absorption capability than CoNi@SiO2 microspheres. Compared with SiO2, TiO2 dielectric shells could protect CoNi microspheres from merger and agglomeration during annealed. These results indicate that CoNi@TiO2 core-shell microspheres can serve as high-performance absorbers for electromagnetic wave absorbing application.

13.
ACS Appl Mater Interfaces ; 9(26): 21933-21941, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28569065

RESUMO

Ferromagnetic metal/alloy nanoparticles have attracted extensive interest for electromagnetic wave-absorbing applications. However, ferromagnetic nanoparticles are prone to oxidization and producing eddy currents, leading to the deterioration of electromagnetic properties. In this work, a simple and scalable liquid-phase reduction method was employed to synthesize uniform Co7Fe3 nanospheres with diameters ranging from 350 to 650 nm for high-performance microwave absorption application. Co7Fe3@SiO2 core-shell nanospheres with SiO2 shell thicknesses of 30 nm were then fabricated via a modified Stöber method. When tested as microwave absorbers, bare Co7Fe3 nanospheres with a diameter of 350 nm have a maximum reflection loss (RL) of 78.4 dB and an effective absorption with RL > 10 dB from 10 to 16.7 GHz at a small thickness of 1.59 mm. Co7Fe3@SiO2 nanospheres showed a significantly enhanced microwave absorption capability for an effective absorption bandwidth and a shift toward a lower frequency, which is ascribed to the protection of the SiO2 shell from direct contact among Co7Fe3 nanospheres, as well as improved crystallinity and decreased defects upon annealing. This work illustrates a simple and effective method to fabricate Co7Fe3 and Co7Fe3@SiO2 nanospheres as promising microwave absorbers, and the design concept can also be extended to other ferromagnetic alloy particles.

14.
Sci Rep ; 7: 45480, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28368010

RESUMO

We report the thermal annealing-induced formation of ring-like structure of Zn(II)-doped magnetite from iron alkoxide leaf-like nanoplate precusor. The phase, structure and morphology of magnetite nanorings were comprehensively characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscope, scanning electron microscope, and transmission electron microscope. The obtained Zn(II)-doped magnetite nanorings are of 13-20 nm in edge width, 70-110 nm in short axis length and 100-150 nm in long axis length. The growth mechanism was possibly due to a combined effect of decomposition of the organic component and diffusion growth. Zn(II)-doped magnetite nanorings delivered saturation magnetization of 66.4 emu/g and coercivity of 33 Oe at room temperature. In addition, the coatings containing Zn(II)-doped magnetite nanorings as fillers exhibit excellent microwave absorption properties with a maximum reflection loss of -40.4 dB and wide effective absorbing band obtained in coating with thin thickness of 1.50 mm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA