Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 897: 165374, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37422230

RESUMO

Fungi represent the dominant eukaryotic group of organisms in anoxic marine sedimentary ecosystems, ranging from a few centimeters to ~ 2.5 km below seafloor. However, little is known about how fungi can colonize anaerobic subseafloor environments for tens of millions of years and whether they play a role in elemental biogeochemical cycles. Based on metabolite detection, isotope tracer and gene analysis, we examined the anaerobic nitrogen conversion pathways of 19 fungal species (40 strains) isolated from1.3 to 2.5 km coal-bearing sediments below seafloor. Our results show for the first time that almost all fungi possess anaerobic denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and nitrification pathways, but not anaerobic ammonium oxidation (anammox). Moreover, the distribution of fungi with different nitrogen-conversion abilities in subseafloor sediments was mainly determined by in situ temperature, CaCO3, and inorganic carbon contents. These findings suggest that fungi have multiple nitrogen transformation processes to cope with their requirements for a variety of nitrogen sources in nutrient deficient anaerobic subseafloor sedimentary environments.


Assuntos
Compostos de Amônio , Ecossistema , Nitrogênio/análise , Nitratos/análise , Compostos de Amônio/metabolismo , Fungos/metabolismo , Oxirredução , Desnitrificação
2.
Front Microbiol ; 14: 1216714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455735

RESUMO

Introduction: Aspergillussydowii is an important filamentous fungus that inhabits diverse environments. However, investigations on the biology and genetics of A. sydowii in subseafloor sediments remain limited. Methods: Here, we performed de novo sequencing and assembly of the A. sydowii 29R-4-F02 genome, an isolate obtained from approximately 2.4 km deep, 20-million-year-old coal-bearing sediments beneath the seafloor by employing the Nanopore sequencing platform. Results and Discussion: The generated genome was 37.19 Mb with GC content of 50.05%. The final assembly consisted of 11 contigs with N50 of 4.6 Mb, encoding 12,488 putative genes. Notably, the subseafloor strain 29R-4-F02 showed a higher number of carbohydrate-active enzymes (CAZymes) and distinct genes related to vesicular fusion and autophagy compared to the terrestrial strain CBS593.65. Furthermore, 257 positively selected genes, including those involved in DNA repair and CAZymes were identified in subseafloor strain 29R-4-F02. These findings suggest that A. sydowii possesses a unique genetic repertoire enabling its survival in the extreme subseafloor environments over tens of millions of years.

3.
Front Plant Sci ; 8: 1503, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28900438

RESUMO

Triacylglycerols are produced in abundance through chloroplast and endoplasmic reticulum pathways in some microalgae exposed to stress, though the relative contribution of either pathway remains elusive. Characterization of these pathways requires isolation of the organelles. In this study, an efficient and reproducible approach, including homogenous batch cultures of nitrogen-deprived algal cells in photobioreactors, gentle cell disruption using a simple custom-made disruptor with mechanical shear force, optimized differential centrifugation and Percoll density gradient centrifugation, was developed to isolate chloroplasts from Chlamydomonas reinhardtii subjected to nitrogen stress. Using this approach, the maximum limited stress duration was 4 h and the stressed cells exhibited 19 and 32% decreases in intracellular chlorophyll and nitrogen content, respectively. Chloroplasts with 48 - 300 µg chlorophyll were successfully isolated from stressed cells containing 10 mg chlorophyll. These stressed chloroplasts appeared intact, as monitored by ultrastructure observation and a novel quality control method involving the fatty acid biomarkers. This approach can provide sufficient quantities of intact stressed chloroplasts for subcellular biochemical studies in microalgae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...