Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Drug Metab Pharmacokinet ; 45(1): 51-69, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31602595

RESUMO

BACKGROUND AND OBJECTIVES: Methyl 3,4-dihydroxybenzoate (MDHB) has the potential to prevent neurodegenerative diseases (NDDs). The present work investigated its excretion, metabolism, and cytochrome P450-based drug-drug interactions (DDIs). METHODS: After intragastric administration of MDHB, the parent drug was assayed in the urine and faeces of mice. Metabolites of MDHB in the urine, faeces, brain, plasma and liver were detected by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). A cocktail approach was used to evaluate the inhibition of cytochrome P450 isoforms by MDHB. RESULTS: The cumulative excretion permille of MDHB in the urine and faeces were found to be 0.67 ± 0.31 and 0.49 ± 0.44‰, respectively. A total of 96 metabolites of MDHB were identified, and all IC50 (half-maximal inhibitory concentration) values of MDHB towards cytochrome P450 isoforms were > 100 µM. CONCLUSIONS: The results suggest that MDHB has a low parent drug cumulative excretion percentage and that MDHB has multiple metabolites and is mainly metabolized through the loss of -CH2 and -CO2, the loss of -CH2O, ester bond hydrolysis, the loss of -O and -CO2, isomerization, methylation, sulfate conjugation, the loss of -CH2O and -O and glycine conjugation, glycine conjugation, the loss of two -O groups and alanine conjugation, the loss of -CH2O and -O and glucose conjugation, glucuronidation, glucose conjugation, etc., in vivo. Finally, MDHB has a low probability of cytochrome P450-based DDIs.


Assuntos
Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Hidroxibenzoatos/metabolismo , Eliminação Renal/efeitos dos fármacos , Animais , Interações Medicamentosas , Fezes , Hidroxibenzoatos/sangue , Masculino , Camundongos , Estrutura Molecular , Doenças Neurodegenerativas/prevenção & controle , Fármacos Neuroprotetores/metabolismo , Isoformas de Proteínas
2.
Front Aging Neurosci ; 11: 279, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803043

RESUMO

Although lipopolysaccharides (LPS) have been used to establish animal models of memory loss akin to what is observed in Alzheimer's disease (AD), the exact mechanisms involved have not been substantiated. In this study, we established an animal model of learning and memory impairment induced by LPS and explored the biological processes and pathways involved. Mice were continuously intraperitoneally injected with LPS for 7 days. Learning- and memory-related behavioral performance and the pathological processes involved were assessed using the Morris water maze test and immunostaining, respectively. We detected comprehensive expression of C1q, C3, microglia, and their regulatory cytokines in the hippocampus. After 7 days of LPS administration, we were able to observe LPS-induced learning and memory impairment in the mice, which was attributed to neural impairment and synapse loss in the hippocampus. We elucidated that the immune system was activated, with the classical complement pathway and microglial phagocytosis being involved in the synapse loss. This study demonstrates that an LPS-injected mouse can serve as an early memory impairment model for studies on anti-AD drugs.

3.
Front Cell Neurosci ; 12: 478, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581378

RESUMO

Neural stem cells (NSCs) have been shown as a potential source for replacing degenerated neurons in neurodegenerative diseases. However, the therapeutic potential of these cells is limited by the lack of effective methodologies for controlling their differentiation. Inducing endogenous pools of NSCs by small molecule can be considered as a potential approach of generating the desired cell types in large numbers. Here, we reported the characterization of a small molecule (Methyl 3,4-dihydroxybenzoate; MDHB) that selectively induces hippocampal NSCs to differentiate into cholinergic motor neurons which expressed synapsin 1 (SYN1) and postsynaptic density protein 95 (PSD-95). Studies on the mechanisms revealed that MDHB induced the hippocampal NSCs differentiation into cholinergic motor neurons by inhibiting AKT phosphorylation and activating autophosphorylation of GSK3ß at tyrosine 216. Furthermore, we found that MDHB enhanced ß-catenin degradation and abolished its entering into the nucleus. Collectively, this report provides the strong evidence that MDHB promotes NSCs differentiation into cholinergic motor neurons by enhancing gene Isl1 expression and inhibiting cell cycle progression. It may provide a basis for pharmacological effects of MDHB directed on NSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...