Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(37): 20504-20510, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34184380

RESUMO

For a better design of adsorbents, it is important to know the intermolecular interaction among adsorbates and host material, leading to improved guest selectivity and uptake capacity. In this study, we demonstrate the influence of the interaction among adsorbates and substrate, controlled by the pore environment and species of adsorbates, on the adsorption behaviour. We report the unique CO2 adsorption behaviour of MOF-205 due to distinct pore geometry. The precise analysis through gas-adsorption crystallography with molecular simulation shows that capillary condensation of CO2 in MOF-205 occurs preferentially in the large dodecahedral pore rather than the small tetrahedral pore, because the interaction of CO2 with MOF-205 framework is weaker than that among CO2 molecules, while Ar and N2 are sequentially filled into two different pores of MOF-205 according to their size. Comparison of the materials with different pore environments reveals that the relative strength of the adsorbate-adsorbate and adsorbate-substrate interaction gives rise to different shapes of isotherms.

2.
Nat Chem ; 11(2): 170-176, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30455431

RESUMO

It remains difficult to understand the surface of solid acid catalysts at the molecular level, despite their importance for industrial catalytic applications. A sulfated zirconium-based metal-organic framework, MOF-808-SO4, was previously shown to be a strong solid Brønsted acid material. In this report, we probe the origin of its acidity through an array of spectroscopic, crystallographic and computational characterization techniques. The strongest Brønsted acid site is shown to consist of a specific arrangement of adsorbed water and sulfate moieties on the zirconium clusters. When a water molecule adsorbs to one zirconium atom, it participates in a hydrogen bond with a sulfate moiety that is chelated to a neighbouring zirconium atom; this motif, in turn, results in the presence of a strongly acidic proton. On dehydration, the material loses its acidity. The hydrated sulfated MOF exhibits a good catalytic performance for the dimerization of isobutene (2-methyl-1-propene), and achieves a 100% selectivity for C8 products with a good conversion efficiency.

3.
Nat Commun ; 9(1): 1647, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695805

RESUMO

The presence and variation of chemical functionality and defects in crystalline materials, such as metal-organic frameworks (MOFs), have tremendous impact on their properties. Finding a means of identifying and characterizing this chemical diversity is an important ongoing challenge. This task is complicated by the characteristic problem of bulk measurements only giving a statistical average over an entire sample, leaving uncharacterized any diversity that might exist between crystallites or even within individual crystals. Here, we show that by using fluorescence imaging and lifetime analysis, both the spatial arrangement of functionalities and the level of defects within a multivariable MOF crystal can be determined for the bulk as well as for the individual constituent crystals. We apply these methods to UiO-67 to study the incorporation of functional groups and their consequences on the structural features. We believe that the potential of the techniques presented here in uncovering chemical diversity in what is generally assumed to be homogeneous systems can provide a new level of understanding of materials properties.

4.
J Am Chem Soc ; 139(36): 12382-12385, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28841310

RESUMO

Exceptionally high surface area and ordered nanopores of a metal-organic framework (MOF) are exploited to encapsulate and homogeneously disperse a considerable amount of phosphotungstic acid (PTA). When combined with platinum nanoparticles positioned on the external surface of the MOF, the construct shows a high catalytic activity for hydroisomerization of n-hexane, a reaction requiring hydrogenation/dehydrogenation and moderate to strong Brønsted acid sites. Characterization of the catalytic activity and acidic sites as a function of PTA loading demonstrates that both the concentration and strength of acidic sites are highest for the catalyst with the largest amount of PTA. The MOF construct containing 60% PTA by weight produces isoalkanes with 100% selectivity and 9-fold increased mass activity as compared to a more traditional aluminosilicate catalyst, further demonstrating the capacity of the MOF to contain a high concentration of active sites necessary for the isomerization reaction.

5.
J Am Chem Soc ; 138(32): 10244-51, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27442620

RESUMO

High methane storage capacity in porous materials is important for the design and manufacture of vehicles powered by natural gas. Here, we report the synthesis, crystal structures and methane adsorption properties of five new zinc metal-organic frameworks (MOFs), MOF-905, MOF-905-Me2, MOF-905-Naph, MOF-905-NO2, and MOF-950. All these MOFs consist of the Zn4O(-CO2)6 secondary building units (SBUs) and benzene-1,3,5-tri-ß-acrylate, BTAC. The permanent porosity of all five materials was confirmed, and their methane adsorption measured up to 80 bar to reveal that MOF-905 is among the best performing methane storage materials with a volumetric working capacity (desorption at 5 bar) of 203 cm(3) cm(-3) at 80 bar and 298 K, a value rivaling that of HKUST-1 (200 cm(3) cm(-3)), the benchmark compound for methane storage in MOFs. This study expands the scope of MOF materials with ultrahigh working capacity to include linkers having the common acrylate connectivity.

6.
J Am Chem Soc ; 138(10): 3255-65, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26863450

RESUMO

Linking molecular building units by covalent bonds to make crystalline extended structures has given rise to metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), thus bringing the precision and versatility of covalent chemistry beyond discrete molecules to extended structures. The key advance in this regard has been the development of strategies to overcome the "crystallization problem", which is usually encountered when attempting to link molecular building units into covalent solids. Currently, numerous MOFs and COFs are made as crystalline materials in which the large size of the constituent units provides for open frameworks. The molecular units thus reticulated become part of a new environment where they have (a) lower degrees of freedom because they are fixed into position within the framework; (b) well-defined spatial arrangements where their properties are influenced by the intricacies of the pores; and (c) ordered patterns onto which functional groups can be covalently attached to produce chemical complexity. The notion of covalent chemistry beyond molecules is further strengthened by the fact that covalent reactions can be carried out on such frameworks, with full retention of their crystallinity and porosity. MOFs are exemplars of how this chemistry has led to porosity with designed metrics and functionality, chemically-rich sequences of information within their frameworks, and well-defined mesoscopic constructs in which nanoMOFs enclose inorganic nanocrystals and give them new levels of spatial definition, stability, and functionality.

7.
Sci Rep ; 6: 19097, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26796523

RESUMO

Water adsorption is becoming increasingly important for many applications including thermal energy storage, desalination, and water harvesting. To develop such applications, it is essential to understand both adsorbent-adsorbate and adsorbate-adsorbate interactions, and also the energy required for adsorption/desorption processes of porous material-adsorbate systems, such as zeolites and metal-organic frameworks (MOFs). In this study, we present a technique to characterize the enthalpy of adsorption/desorption of zeolites and MOF-801 with water as an adsorbate by conducting desorption experiments with conventional differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA). With this method, the enthalpies of adsorption of previously uncharacterized adsorbents were estimated as a function of both uptake and temperature. Our characterizations indicate that the adsorption enthalpies of type I zeolites can increase to greater than twice the latent heat whereas adsorption enthalpies of MOF-801 are nearly constant for a wide range of vapor uptakes.

8.
Chem Rev ; 115(14): 6966-97, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26088535
9.
J Am Chem Soc ; 136(37): 12844-7, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25157587

RESUMO

Superacids, defined as acids with a Hammett acidity function H0 ≤ -12, are useful materials, but a need exists for new, designable solid state systems. Here, we report superacidity in a sulfated metal-organic framework (MOF) obtained by treating the microcrystalline form of MOF-808 [MOF-808-P: Zr6O5(OH)3(BTC)2(HCOO)5(H2O)2, BTC = 1,3,5-benzenetricarboxylate] with aqueous sulfuric acid to generate its sulfated analogue, MOF-808-2.5SO4 [Zr6O5(OH)3(BTC)2(SO4)2.5(H2O)2.5]. This material has a Hammett acidity function H0 ≤ -14.5 and is thus identified as a superacid, providing the first evidence for superacidity in MOFs. The superacidity is attributed to the presence of zirconium-bound sulfate groups structurally characterized using single-crystal X-ray diffraction analysis.

10.
J Am Chem Soc ; 136(11): 4369-81, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24588307

RESUMO

Water adsorption in porous materials is important for many applications such as dehumidification, thermal batteries, and delivery of drinking water in remote areas. In this study, we have identified three criteria for achieving high performing porous materials for water adsorption. These criteria deal with condensation pressure of water in the pores, uptake capacity, and recyclability and water stability of the material. In search of an excellently performing porous material, we have studied and compared the water adsorption properties of 23 materials, 20 of which are metal-organic frameworks (MOFs). Among the MOFs are 10 zirconium(IV) MOFs with a subset of these, MOF-801-SC (single crystal form), -802, -805, -806, -808, -812, and -841 reported for the first time. MOF-801-P (microcrystalline powder form) was reported earlier and studied here for its water adsorption properties. MOF-812 was only made and structurally characterized but not examined for water adsorption because it is a byproduct of MOF-841 synthesis. All the new zirconium MOFs are made from the Zr6O4(OH)4(-CO2)n secondary building units (n = 6, 8, 10, or 12) and variously shaped carboxyl organic linkers to make extended porous frameworks. The permanent porosity of all 23 materials was confirmed and their water adsorption measured to reveal that MOF-801-P and MOF-841 are the highest performers based on the three criteria stated above; they are water stable, do not lose capacity after five adsorption/desorption cycles, and are easily regenerated at room temperature. An X-ray single-crystal study and a powder neutron diffraction study reveal the position of the water adsorption sites in MOF-801 and highlight the importance of the intermolecular interaction between adsorbed water molecules within the pores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...