Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 3(3): 100430, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37056379

RESUMO

We present a deep-learning-based platform, MIND-S, for protein post-translational modification (PTM) predictions. MIND-S employs a multi-head attention and graph neural network and assembles a 15-fold ensemble model in a multi-label strategy to enable simultaneous prediction of multiple PTMs with high performance and computation efficiency. MIND-S also features an interpretation module, which provides the relevance of each amino acid for making the predictions and is validated with known motifs. The interpretation module also captures PTM patterns without any supervision. Furthermore, MIND-S enables examination of mutation effects on PTMs. We document a workflow, its applications to 26 types of PTMs of two datasets consisting of ∼50,000 proteins, and an example of MIND-S identifying a PTM-interrupting SNP with validation from biological data. We also include use case analyses of targeted proteins. Taken together, we have demonstrated that MIND-S is accurate, interpretable, and efficient to elucidate PTM-relevant biological processes in health and diseases.


Assuntos
Aprendizado Profundo , Humanos , Proteínas/genética , Processamento de Proteína Pós-Traducional/genética , Redes Neurais de Computação , Aminoácidos/metabolismo
2.
Philos Trans A Math Phys Eng Sci ; 380(2214): 20210125, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34802278

RESUMO

The outbreak of the novel coronavirus, COVID-19, has become one of the most severe pandemics in human history. In this paper, we propose to leverage social media users as social sensors to simultaneously predict the pandemic trends and suggest potential risk factors for public health experts to understand spread situations and recommend proper interventions. More precisely, we develop novel deep learning models to recognize important entities and their relations over time, thereby establishing dynamic heterogeneous graphs to describe the observations of social media users. A dynamic graph neural network model can then forecast the trends (e.g. newly diagnosed cases and death rates) and identify high-risk events from social media. Based on the proposed computational method, we also develop a web-based system for domain experts without any computer science background to easily interact with. We conduct extensive experiments on large-scale datasets of COVID-19 related tweets provided by Twitter, which show that our method can precisely predict the new cases and death rates. We also demonstrate the robustness of our web-based pandemic surveillance system and its ability to retrieve essential knowledge and derive accurate predictions across a variety of circumstances. Our system is also available at http://scaiweb.cs.ucla.edu/covidsurveiller/. This article is part of the theme issue 'Data science approachs to infectious disease surveillance'.


Assuntos
COVID-19 , Mídias Sociais , Mineração de Dados , Humanos , Pandemias , SARS-CoV-2
3.
Bioinformatics ; 37(Suppl_1): i289-i298, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252942

RESUMO

MOTIVATION: Circular RNA (circRNA) is a novel class of long non-coding RNAs that have been broadly discovered in the eukaryotic transcriptome. The circular structure arises from a non-canonical splicing process, where the donor site backspliced to an upstream acceptor site. These circRNA sequences are conserved across species. More importantly, rising evidence suggests their vital roles in gene regulation and association with diseases. As the fundamental effort toward elucidating their functions and mechanisms, several computational methods have been proposed to predict the circular structure from the primary sequence. Recently, advanced computational methods leverage deep learning to capture the relevant patterns from RNA sequences and model their interactions to facilitate the prediction. However, these methods fail to fully explore positional information of splice junctions and their deep interaction. RESULTS: We present a robust end-to-end framework, Junction Encoder with Deep Interaction (JEDI), for circRNA prediction using only nucleotide sequences. JEDI first leverages the attention mechanism to encode each junction site based on deep bidirectional recurrent neural networks and then presents the novel cross-attention layer to model deep interaction among these sites for backsplicing. Finally, JEDI can not only predict circRNAs but also interpret relationships among splice sites to discover backsplicing hotspots within a gene region. Experiments demonstrate JEDI significantly outperforms state-of-the-art approaches in circRNA prediction on both isoform level and gene level. Moreover, JEDI also shows promising results on zero-shot backsplicing discovery, where none of the existing approaches can achieve. AVAILABILITY AND IMPLEMENTATION: The implementation of our framework is available at https://github.com/hallogameboy/JEDI. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA Circular , RNA Longo não Codificante , Redes Neurais de Computação , RNA/genética , Sítios de Splice de RNA/genética , Splicing de RNA
4.
Med Rev (Berl) ; 1(2): 114-125, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35881666

RESUMO

Objectives: Genomic signatures like k-mers have become one of the most prominent approaches to describe genomic data. As a result, myriad real-world applications, such as the construction of de Bruijn graphs in genome assembly, have been benefited by recognizing genomic signatures. In other words, an efficient approach of genomic signature profiling is an essential need for tackling high-throughput sequencing reads. However, most of the existing approaches only recognize fixed-size k-mers while many research studies have shown the importance of considering variable-length k-mers. Methods: In this paper, we present a novel genomic signature profiling approach, TahcoRoll, by extending the Aho-Corasick algorithm (AC) for the task of profiling variable-length k-mers. We first group nucleotides into two clusters and represent each cluster with a bit. The rolling hash technique is further utilized to encode signatures and read patterns for efficient matching. Results: In extensive experiments, TahcoRoll significantly outperforms the most state-of-the-art k-mer counters and has the capability of processing reads across different sequencing platforms on a budget desktop computer. Conclusions: The single-thread version of TahcoRoll is as efficient as the eight-thread version of the state-of-the-art, JellyFish, while the eight-thread TahcoRoll outperforms the eight-thread JellyFish by at least four times.

5.
NAR Genom Bioinform ; 2(2): lqaa015, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32166223

RESUMO

The functional impact of protein mutations is reflected on the alteration of conformation and thermodynamics of protein-protein interactions (PPIs). Quantifying the changes of two interacting proteins upon mutations is commonly carried out by computational approaches. Hence, extensive research efforts have been put to the extraction of energetic or structural features on proteins, followed by statistical learning methods to estimate the effects of mutations on PPI properties. Nonetheless, such features require extensive human labors and expert knowledge to obtain, and have limited abilities to reflect point mutations. We present an end-to-end deep learning framework, MuPIPR (Mutation Effects in Protein-protein Interaction PRediction Using Contextualized Representations), to estimate the effects of mutations on PPIs. MuPIPR incorporates a contextualized representation mechanism of amino acids to propagate the effects of a point mutation to surrounding amino acid representations, therefore amplifying the subtle change in a long protein sequence. On top of that, MuPIPR leverages a Siamese residual recurrent convolutional neural encoder to encode a wild-type protein pair and its mutation pair. Multi-layer perceptron regressors are applied to the protein pair representations to predict the quantifiable changes of PPI properties upon mutations. Experimental evaluations show that, with only sequence information, MuPIPR outperforms various state-of-the-art systems on estimating the changes of binding affinity for SKEMPI v1, and offers comparable performance on SKEMPI v2. Meanwhile, MuPIPR also demonstrates state-of-the-art performance on estimating the changes of buried surface areas. The software implementation is available at https://github.com/guangyu-zhou/MuPIPR.

6.
Hum Genomics ; 13(Suppl 1): 47, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31639050

RESUMO

BACKGROUND: Microbes are greatly associated with human health and disease, especially in densely populated cities. It is essential to understand the microbial ecosystem in an urban environment for cities to monitor the transmission of infectious diseases and detect potentially urgent threats. To achieve this goal, the DNA sample collection and analysis have been conducted at subway stations in major cities. However, city-scale sampling with the fine-grained geo-spatial resolution is expensive and laborious. In this paper, we introduce MetaMLAnn, a neural network based approach to infer microbial communities at unsampled locations given information reflecting different factors, including subway line networks, sampling material types, and microbial composition patterns. RESULTS: We evaluate the effectiveness of MetaMLAnn based on the public metagenomics dataset collected from multiple locations in the New York and Boston subway systems. The experimental results suggest that MetaMLAnn consistently performs better than other five conventional classifiers under different taxonomic ranks. At genus level, MetaMLAnn can achieve F1 scores of 0.63 and 0.72 on the New York and the Boston datasets, respectively. CONCLUSIONS: By exploiting heterogeneous features, MetaMLAnn captures the hidden interactions between microbial compositions and the urban environment, which enables precise predictions of microbial communities at unmeasured locations.


Assuntos
Metagenômica/métodos , Microbiota/genética , Redes Neurais de Computação , Algoritmos , Boston , Cidades , Bases de Dados Genéticas , Modelos Genéticos , New York , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA