Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Diagn Microbiol Infect Dis ; 109(3): 116278, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38723451

RESUMO

The aim of this study was to evaluate the influence factors of metagenomic next-generation sequencing (mNGS) negative results in the diagnosed patients with spinal infection. mNGS test was applied in a cohort of 114 patients with suspected spinal infection, among which 56 patients had a final diagnosis of spinal infection. mNGS achieved a sensitivity of 75.0% (95% CI, 61.6% to 85.6%) and a specificity of 84.5% (95% CI, 72.6% to 92.7%), using histopathology and culture results as reference. Diagnosed patients with a negative culture result had lower white blood cell account, percentage of neutrophilic granulocyte, C-reactive protein (all P<0.05) and relatively higher rate of prior antimicrobial treatment history (P=0.059). However, diagnosed patients with a negative mNGS result did not have such difference with mNGS-positive patients, suggesting that mNGS was not strictly limited by the above indicators, which presented the advantages of this technique from another point of view.

2.
Phys Rev Lett ; 132(12): 120201, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38579221

RESUMO

We consider how to describe Hamiltonian mechanics in generalized probabilistic theories with the states represented as quasiprobability distributions. We give general operational definitions of energy-related concepts. We define generalized energy eigenstates as the purest stationary states. Planck's constant plays two different roles in the framework: the phase space volume taken up by a pure state and a dynamical factor. The Hamiltonian is a linear combination of generalized energy eigenstates. This allows for a generalized Liouville time-evolution equation that applies to quantum and classical Hamiltonian mechanics and more. The approach enables a unification of quantum and classical energy concepts and a route to discussing energy in a wider set of theories.

3.
Ann Plast Surg ; 92(5): 585-590, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38685498

RESUMO

BACKGROUND: Acellular nerve allografts (ANAs) were developed to replace the autologous nerve grafts (ANGs) to fill the peripheral nerve defects. Poor vascularization relative to ANGs has been a limitation of application of ANAs. METHODS: A total of 60 female Sprague-Dawley rats were assigned 3 groups. The rats in A group received ANGs, the rats in B group received ANAs, and the rats in C group were transplanted with ANA carrying endothelial cells (ANA + ECs). In the 1st, 2nd, 4th, and 12th postoperative weeks, 5 rats were selected from each group for evaluating sciatic function index (SFI), electrophysiology, maximum tetanic force recovery rate, tibialis anterior muscle weights recovery rate, and microvessel density. In the 12th postoperative week, the nerves were harvested and stained with toluidine blue and observed under an electron microscope to compare nerve fibers, myelin width, and G-ratio. RESULTS: All the rats survived. In the first and second postoperative weeks, more microvessels were found in the ANA + EC group. In the 12th postoperative week, the nerve fibers were more numerous, and G-ratio was smaller in the C group compared with the B group. The compound muscle action potential and maximum tetanic force recovery rate in the tibialis anterior muscle in the C group were better than those in the B group in the 12th postoperative week. The A group showed better performances in electrophysiology, maximum tetanic force, muscle wet weight, and nerve regeneration. CONCLUSION: ANA + ECs can promote early angiogenesis, promoting nerve regeneration and neurological function recovery.


Assuntos
Aloenxertos , Células Endoteliais , Regeneração Nervosa , Ratos Sprague-Dawley , Nervo Isquiático , Animais , Feminino , Ratos , Nervo Isquiático/cirurgia , Nervo Isquiático/lesões , Nervo Isquiático/transplante , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/cirurgia , Recuperação de Função Fisiológica , Distribuição Aleatória
4.
Acta Biomater ; 180: 82-103, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621599

RESUMO

The treatment of osteoporotic bone defect remains a big clinical challenge because osteoporosis (OP) is associated with oxidative stress and high levels of reactive oxygen species (ROS), a condition detrimental for bone formation. Anti-oxidative nanomaterials such as selenium nanoparticles (SeNPs) have positive effect on osteogenesis owing to their pleiotropic pharmacological activity which can exert anti-oxidative stress functions to prevent bone loss and facilitate bone regeneration in OP. In the current study a strategy of one-pot method by introducing Poly (lactic acid-carbonate) (PDT) and ß-Tricalcium Phosphate (ß-TCP) with SeNPs, is developed to prepare an injectable, anti-collapse, shape-adaptive and adhesive bone graft substitute material (PDT-TCP-SE). The PDT-TCP-SE bone graft substitute exhibits sufficient adhesion in biological microenvironments and osteoinductive activity, angiogenic effect and anti-inflammatory as well as anti-oxidative effect in vitro and in vivo. Moreover, the PDT-TCP-SE can protect BMSCs from erastin-induced ferroptosis through the Sirt1/Nrf2/GPX4 antioxidant pathway, which, in together, demonstrated the bone graft substitute material as an emerging biomaterial with potential clinical application for the future treatment of osteoporotic bone defect. STATEMENT OF SIGNIFICANCE: Injectable, anti-collapse, adhesive, plastic and bioactive bone graft substitute was successfully synthesized. Incorporation of SeNPs with PDT into ß-TCP regenerated new bone in-situ by moderating oxidative stress in osteoporotic bone defects area. The PDT-TCP-SE bone graft substitute reduced high ROS levels in osteoporotic bone defect microenvironment. The bone graft substitute could also moderate oxidative stress and inhibit ferroptosis via Sirt1/Nrf2/GPX4 pathway in vitro. Moreover, the PDT-TCP-SE bone graft substitute could alleviate the inflammatory environment and promote bone regeneration in osteoporotic bone defect in vivo. This biomaterial has the advantages of simple synthesis, biocompatibility, anti-collapse, injectable, and regulation of oxidative stress level, which has potential application value in bone tissue engineering.


Assuntos
Regeneração Óssea , Substitutos Ósseos , Fosfatos de Cálcio , Osteoporose , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Animais , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Osteoporose/patologia , Osteoporose/terapia , Osteoporose/tratamento farmacológico , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Ratos Sprague-Dawley , Selênio/química , Selênio/farmacologia , Feminino , Osteogênese/efeitos dos fármacos , Poliésteres/química , Poliésteres/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos , Injeções
5.
Adv Sci (Weinh) ; 11(17): e2302988, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430538

RESUMO

Peripheral nerve injury (PNI) remains a challenging area in regenerative medicine. Nerve guide conduit (NGC) transplantation is a common treatment for PNI, but the prognosis of NGC treatment is unsatisfactory due to 1) neuromechanical unmatching and 2) the intra-conduit inflammatory microenvironment (IME) resulting from Schwann cell pyroptosis and inflammatory-polarized macrophages. A neuromechanically matched NGC composed of regenerated silk fibroin (RSF) loaded with poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (P:P) and dimethyl fumarate (DMF) are designed, which exhibits a matched elastic modulus (25.1 ± 3.5 MPa) for the peripheral nerve and the highest 80% elongation at break, better than most protein-based conduits. Moreover, the NGC can gradually regulate the intra-conduit IME by releasing DMF and monitoring sciatic nerve movements via piezoresistive sensing. The combination of NGC and electrical stimulation modulates the IME to support PNI regeneration by synergistically inhibiting Schwann cell pyroptosis and reducing inflammatory factor release, shifting macrophage polarization from the inflammatory M1 phenotype to the tissue regenerative M2 phenotype and resulting in functional recovery of neurons. In a rat sciatic nerve crush model, NGC promoted remyelination and functional and structural regeneration. Generally, the DMF/RSF/P:P conduit provides a new potential therapeutic approach to promote nerve repair in future clinical treatments.


Assuntos
Fibroínas , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Animais , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Ratos , Traumatismos dos Nervos Periféricos/terapia , Fibroínas/química , Fibroínas/farmacologia , Modelos Animais de Doenças , Ratos Sprague-Dawley , Células de Schwann/metabolismo , Regeneração Tecidual Guiada/métodos , Inflamação , Alicerces Teciduais/química , Nervo Isquiático/lesões
6.
Adv Sci (Weinh) ; 11(12): e2303981, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224203

RESUMO

Coloading adjuvant drugs or biomacromolecules with photosensitizers into nanoparticles to enhance the efficiency of photodynamic therapy (PDT) is a common strategy. However, it is difficult to load positively charged photosensitizers and negatively charged adjuvants into the same nanomaterial and further regulate drug release simultaneously. Herein, a single-component dual-functional prodrug strategy is reported for tumor treatment specifically activated by tumor microenvironment (TME)-generated HOCl. A representative prodrug (DHU-CBA2) is constructed using indomethacin grafted with methylene blue (MB). DHU-CBA2 exhibited high sensitivity toward HOCl and achieved simultaneous release of dual drugs in vitro and in vivo. DHU-CBA2 shows effective antitumor activity against lung cancer and spinal metastases via PDT and cyclooxygenase-2 (COX-2) inhibition. Mechanistically, PDT induces immunogenic cell death but stimulates the gene encoding COX-2. Downstream prostaglandins E2 and Indoleamine 2,3 dioxygenase 1 (IDO1) mediate immune escape in the TME, which is rescued by the simultaneous release of indomethacin. DHU-CBA2 promotes infiltration and function of CD8+ T cells, thus inducing a robust antitumor immune response. This work provides an autoboost strategy for a single-component dual-functional prodrug activated by TME-specific HOCl, thereby achieving favorable tumor treatment via the synergistic therapy of PDT and a COX-2 inhibitor.


Assuntos
Neoplasias Pulmonares , Fotoquimioterapia , Pró-Fármacos , Neoplasias da Coluna Vertebral , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Ciclo-Oxigenase 2 , Linfócitos T CD8-Positivos , Neoplasias da Coluna Vertebral/tratamento farmacológico , Indometacina , Microambiente Tumoral
7.
Adv Healthc Mater ; 13(4): e2302342, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975509

RESUMO

Intercellular communication between tumor cells and immune cells regulates tumor progression including positive communication with immune activation and negative communication with immune escape. An increasing number of methods are employed to suppress the dominant negative communication in tumors such as PD-L1/PD-1. However, how to effectively improve positive communication is still a challenge. In this study, a nuclear-targeted photodynamic nanostrategy is developed to establish positive spatiotemporal communication, further activating dual antitumor immunity, namely innate and adaptative immunity. The mSiO2 -Ion@Ce6-NLS nanoparticles (NPs) are designed, whose surface is modified by ionic liquid silicon (Ion) and nuclear localization signal peptide (NLS: PKKKRKV), and their pores are loaded with the photosensitizer hydrogen chloride e6 (Ce6). Ion-modified NPs enhance intratumoral enrichment, and NLS-modified NPs exhibit nuclear-targeted characteristics to achieve nuclear-targeted photodynamic therapy (nPDT). mSiO2 -Ion@Ce6-NLS with nPDT facilitate the release of damaged double-stranded DNA from tumor cells to activate macrophages via stimulator of interferon gene signaling and induce the immunogenic cell death of tumor cells to activate dendritic cells via "eat me" signals, ultimately leading to the recruitment of CD8+ T-cells. This therapy effectively strengthens positive communication to reshape the dual antitumor immune microenvironment, further inducing long-term immune memory, and eventually inhibiting tumor growth and recurrence.


Assuntos
Nanopartículas , Fotoquimioterapia , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Macrófagos , Imunoterapia/métodos , Microambiente Tumoral
8.
Plant Commun ; 5(2): 100734, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37859344

RESUMO

Volatile organic compounds (VOCs) play key roles in plant-plant communication, especially in response to pest attack. E-2-hexenal is an important component of VOCs, but it is unclear whether it can induce endogenous plant resistance to insects. Here, we show that E-2-hexenal activates early signaling events in Arabidopsis (Arabidopsis thaliana) mesophyll cells, including an H2O2 burst at the plasma membrane, the directed flow of calcium ions, and an increase in cytosolic calcium concentration. Treatment of wild-type Arabidopsis plants with E-2-hexenal increases their resistance when challenged with the diamondback moth Plutella xylostella L., and this phenomenon is largely lost in the wrky46 mutant. Mechanistically, E-2-hexenal induces the expression of WRKY46 and MYC2, and the physical interaction of their encoded proteins was verified by yeast two-hybrid, firefly luciferase complementation imaging, and in vitro pull-down assays. The WRKY46-MYC2 complex directly binds to the promoter of RBOHD to promote its expression, as demonstrated by luciferase reporter, yeast one-hybrid, chromatin immunoprecipitation, and electrophoretic mobility shift assays. This module also positively regulates the expression of E-2-hexenal-induced naringenin biosynthesis genes (TT4 and CHIL) and the accumulation of total flavonoids, thereby modulating plant tolerance to insects. Together, our results highlight an important role for the WRKY46-MYC2 module in the E-2-hexenal-induced defense response of Arabidopsis, providing new insights into the mechanisms by which VOCs trigger plant defense responses.


Assuntos
Aldeídos , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flavonoides/metabolismo , Saccharomyces cerevisiae/metabolismo , Cálcio/metabolismo , Peróxido de Hidrogênio/metabolismo , Plantas/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
9.
ACS Nano ; 17(21): 21153-21169, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37921421

RESUMO

Innate and adaptive immunity is important for initiating and maintaining immune function. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome serves as a checkpoint in innate and adaptive immunity, promoting the secretion of pro-inflammatory cytokines and gasdermin D-mediated pyroptosis. As a highly inflammatory form of cell death distinct from apoptosis, pyroptosis can trigger immunogenic cell death and promote systemic immune responses in solid tumors. Previous studies proposed that NLRP3 was activated by translocation to the mitochondria. However, a recent authoritative study has challenged this model and proved that the Golgi apparatus might be a prerequisite for the activation of NLRP3. In this study, we first developed a Golgi apparatus-targeted photodynamic strategy to induce the activation of NLRP3 by precisely locating organelles. We found that Golgi apparatus-targeted photodynamic therapy could significantly upregulate NLRP3 expression to promote the subsequent release of intracellular proinflammatory contents such as IL-1ß or IL-18, creating an inflammatory storm to enhance innate immunity. Moreover, this acute NLRP3 upregulation also activated its downstream classical caspase-1-dependent pyroptosis to enhance tumor immunogenicity, triggering adaptive immunity. Pyroptosis eventually led to immunogenic cell death, promoted the maturation of dendritic cells, and effectively activated antitumor immunity and long-lived immune memory. Overall, this Golgi apparatus-targeted strategy provided molecular insights into the occurrence of immunogenic pyroptosis and offered a platform to remodel the tumor microenvironment.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Inflamassomos/metabolismo , Imunidade Inata , Complexo de Golgi/metabolismo , Interleucina-1beta , Caspase 1/metabolismo
10.
Front Plant Sci ; 14: 1269090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780524

RESUMO

Fruit ripening is a crucial stage in quality development, influenced by a diverse array of internal and external factors. Among these factors, epigenetic regulation holds significant importance and has garnered substantial research attention in recent years. Here, this review aims to discuss the breakthrough in epigenetic regulation of tomato (Solanum lycopersicum) fruit ripening, including DNA methylation, N6-Methyladenosine mRNA modification, histone demethylation/deacetylation, and non-coding RNA. Through this brief review, we seek to enhance our understanding of the regulatory mechanisms governing tomato fruit ripening, while providing fresh insights for the precise modulation of these mechanisms.

11.
Plants (Basel) ; 12(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836119

RESUMO

As an important member of the plant receptor-like kinases, Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) plays vital roles in plant growth and development, as well as biotic and abiotic stress response. Numerous CrRLK1Ls have been identified and analyzed in various plant species, while our knowledge about eggplant (Solanum melongena L.) CrRLK1Ls is still scarce. Utilizing state-of-the-art genomic data, we conducted the first genome-wide identification and analysis of CrRLK1L proteins in eggplant. In this study, 32 CrRLK1L proteins were identified and analyzed in eggplant. A subsequent gene structure and protein domain analysis showed that the identified eggplant CrRLK1Ls possessed typical features of CrRLK1Ls. A subcellular localization prediction demonstrated that these proteins mostly localized on the plasma membrane. A collinearity analysis showed that some eggplant CrRLK1L genes had predicted intraspecies or interspecies evolutionary duplication events. Promoter analysis suggests that eggplant CrRLK1Ls may be involved in plant hormone signaling, host-pathogen interactions, and environmental responses. Based on transcriptomic gene expression analysis, it is indicated that eggplant CrRLK1Ls may be involved in the resistance response of eggplant to Botrytis cinerea. Together, these results will give us a theoretical foundation and guidance for elaborating the biological functions of CrRLK1Ls in eggplant growth, development, and resistance response.

12.
Adv Healthc Mater ; 12(32): e2301724, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37767893

RESUMO

The bone matrix has distinct architecture and biochemistry which present a barrier to synthesizing bone-mimetic regenerative scaffolds. To mimic the natural structures and components of bone, biomimetic structural decellularized extracellular matrix (ECM)/regenerated silk fibroin (RSF) scaffolds incorporated with magnetic nanoparticles (MNP) are prepared using a facile synthetic methodology. The ECM/RSF/MNP scaffold is a hierarchically organized and interconnected porous structure with silk fibroin twined on the collagen nanofibers. The scaffold demonstrates saturation magnetization due to the presence of MNP, along with good cytocompatibility. Moreover, the ß-sheet crystalline domain of RSF and the chelated MNP could mimic the deposition of hydroxyapatite and enhance compressive modulus of the scaffold by ≈20%. The results indicate that an external static magnetic field (SMF) with a magnetic responsive scaffold effectively promotes cell migration, osteogenic differentiation, neogenesis of endotheliocytes in vitro, and new bone formation in a critical-size femur defect rat model. RNA sequencing reveals that the molecular mechanisms underlying this osteogenic effect involve calsequestrin-2-mediated Ca2+ release from the endoplasmic reticulum to activate Ca2+ /calmodulin/calmodulin-dependent kinase II signaling axis. Collectively, bionic magnetic scaffolds with SMF stimulation provide a potent strategy for bone regeneration through internal structural cues, biochemical composition, and external physical stimulation on intracellular Ca2+ homeostasis.


Assuntos
Fibroínas , Alicerces Teciduais , Ratos , Animais , Alicerces Teciduais/química , Fibroínas/química , Osteogênese , Cálcio , Biomimética , Calmodulina , Regeneração Óssea/fisiologia , Fenômenos Magnéticos , Engenharia Tecidual/métodos
13.
ACS Nano ; 17(18): 17858-17872, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37656882

RESUMO

Replicating the controlled nanofibrillar architecture of collagenous tissue represents a promising approach in the design of tendon replacements that have tissue-mimicking biomechanics─outstanding mechanical strength and toughness, defect tolerance, and fatigue and fracture resistance. Guided by this principle, a fibrous artificial tendon (FAT) was constructed in the present study using an engineering strategy inspired by the fibrillation of a naturally spun silk protein. This bioinspired FAT featured a highly ordered molecular and nanofibrillar architecture similar to that of soft collagenous tissue, which exhibited the mechanical and fracture characteristics of tendons. Such similarities provided the motivation to investigate FAT for applications in Achilles tendon defect repair. In vitro cellular morphology and expression of tendon-related genes in cell culture and in vivo modeling of tendon injury clearly revealed that the highly oriented nanofibrils in the FAT substantially promoted the expression of tendon-related genes combined with the Achilles tendon structure and function. These results provide confidence about the potential clinical applications of the FAT.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Regeneração , Tendões , Seda/química
14.
Nat Commun ; 14(1): 4628, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532754

RESUMO

Chemotherapy remains as the first-choice treatment option for triple-negative breast cancer (TNBC). However, the limited tumor penetration and low cellular internalization efficiency of current nanocarrier-based systems impede the access of anticancer drugs to TNBC with dense stroma and thereby greatly restricts clinical therapeutic efficacy, especially for TNBC bone metastasis. In this work, biomimetic head/hollow tail nanorobots were designed through a site-selective superassembly strategy. We show that nanorobots enable efficient remodeling of the dense tumor stromal microenvironments (TSM) for deep tumor penetration. Furthermore, the self-movement ability and spiky head markedly promote interfacial cellular uptake efficacy, transvascular extravasation, and intratumoral penetration. These nanorobots, which integrate deep tumor penetration, active cellular internalization, near-infrared (NIR) light-responsive release, and photothermal therapy capacities into a single nanodevice efficiently suppress tumor growth in a bone metastasis female mouse model of TNBC and also demonstrate potent antitumor efficacy in three different subcutaneous tumor models.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Feminino , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Biomimética , Linhagem Celular Tumoral , Fototerapia , Microambiente Tumoral
15.
ACS Biomater Sci Eng ; 9(9): 5293-5303, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37606611

RESUMO

L-poly(lactic acid) (PLLA) is a biodegradable material with multiple biomedical application potentials, especially as a membrane for guided bone regeneration. In terms of its low strength and poor osteogenic activity, improving these two properties is the key to resolve the limitations of PLLA for bone-associated applications. Herein, an orientation-strengthening technology (OST) was developed to reinforce PLLA's mechanical strength by introducing biocompatible ß-tricalcium phosphate (ß-TCP) to improve the crystallinity of PLLA, allowing for the formation of a highly oriented architecture to acquire an advanced membrane with high mechanical property. Furthermore, the addition of ß-TCP nanoparticles significantly promotes the osteogenic activity of the composites. The tensile strength of the membrane containing 5 wt % ß-TCP was 220 MPa, which was 4-folds that of the native polylactic acid fabricated via the conventional method. The oriented microstructure enhanced both the mechanical strength and the osteogenic activity of the material. The parallel grooves on the material surface are similar to the mineralized collagen fibers on the bone surface, which promoted the growth and differentiation of osteoblasts, with ß-TCP further contributing to the osteoconductive effect. The combination of ß-TCP and orientation-strengthening effect endows the material with higher mechanical properties and bioactivities, which provides an advanced manufacturing strategy for the preparation of PLLA-based materials for bone repair.


Assuntos
Regeneração Óssea , Osteogênese , Fosfatos de Cálcio/farmacologia , Ácido Láctico
16.
Indian J Hematol Blood Transfus ; 39(3): 371-375, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37304473

RESUMO

To assess the diagnostic value of circ-ANAPC7 expression levels in MDS and its risk stratification. This is a retrospective observational study. This study enrolled 125 patients diagnosed with MDS and divided them into five groups according to IPSS-R (very high group, 25; high group, 25; intermediate group, 25; low group, 25; and very low group, 25), and 25 patients with IDA were studied as control group from our bone marrow cell bank. Bone marrow cell were used as material in this study to measure the expression level of circ-ANAPC7 by qRT-PCR. An evaluation of diagnostic value was conducted using ROC curves. Circ-ANAPC7 expression levels were 5.623 ± 4.483, 28.396 ± 12.938, 91.867 ± 37.010, 202.525 ± 54.911, 337.633 ± 86.013, and 502.269 ± 98.410 from the control group to the very high group, respectively (p < 0.05). Circ-ANAPC7 expression was gradually upregulated with the risk stratification of MDS. The AUCs of circ-ANAPC7 were 0.973, 0.996, 0.951, 0.920, and 0.907 in the control group/very low group, very low group/low group, low group/intermediate group, intermediate group/high group, and high group/very high group, respectively. In this study, the expression level of circ-ANAPC7 was found to be a promising biomarker for MDS. It may be added to the scoring system to better identify risk groups.

18.
Connect Tissue Res ; 64(5): 413-427, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161923

RESUMO

Substantial evidence supports that chronic low back pain is associated with intervertebral disc degeneration (IDD), which is accompanied by decreased cell activity and matrix degradation. The role of immune cells, especially macrophages, in a variety of diseases has been extensively studied; therefore, their role in IDD has naturally attracted widespread scholarly interest. The IVD is considered to be an immunologically-privileged site given the presence of physical and biological barriers that include an avascular microenvironment, a high proteoglycan concentration, high physical pressure, the presence of apoptosis inducers such as Fas ligand, and the presence of notochordal cells. However, during IDD, immune cells with distinct characteristics appear in the IVD. Some of these immune cells release factors that promote the inflammatory response and angiogenesis in the disc and are, therefore, important drivers of IDD. Although some studies have elucidated the role of immune cells, no specific strategies related to systemic immunotherapy have been proposed. Herein, we summarize current knowledge of the presence and role of immune cells in IDD and consider that immunotherapy targeting immune cells may be a novel strategy for alleviating IDD symptoms.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/metabolismo , Apoptose , Imunoterapia , Disco Intervertebral/metabolismo
19.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175103

RESUMO

The aroma, taste, and flavour profiles of mango cultivars vary, directly influencing their marketability and consumer acceptance. In this study, we explored the effects of volatile organic compounds (VOCs) on the distinct aromas of two mango cultivars during storage using GC-IMS and HS-SPME-GC-MS combined with OPLS-DA analysis. Our findings revealed that the terpene and aldehyde contents were higher in the 'Tainong' mango cultivar, compared to the 'Hongyu' mango, while the ester content was lower. The aroma was attributed to the presence of terpinolene, 2-nonenal, delta-carene, and alpha-phellandrene in the early stages of storage, and later-between 5 and 11 days-to ethyl acetate, ethyl butyrate, and ethyl propanoate. Further analysis of characteristic VOCs using OPLS-DA demonstrated and explained the strong grassy aroma of the 'Tainong' mango, and the strong fruity and sweet aromas of the 'Hongyu' mango. Additionally, esters mainly accumulated during the later periods of storage, especially propyl butyrate, which was produced and accumulated when fruit quality deteriorated in the later storage period. Our study provides a theoretical basis for detecting mango VOCs during storage to determine the appropriate marketing time for the two mango cultivars and enables informed consumer choice.


Assuntos
Mangifera , Compostos Orgânicos Voláteis , Odorantes/análise , Paladar , Cromatografia Gasosa-Espectrometria de Massas , Percepção Gustatória , Aromatizantes , Compostos Orgânicos Voláteis/análise , Ésteres
20.
Mediators Inflamm ; 2023: 9721375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37144237

RESUMO

Background: Peripheral nerve injury (PNI) is one of the most debilitating injuries, but therapies for PNI are still far from satisfactory. Pyroptosis, a recently identified form of cell death, has been demonstrated to participate in different diseases. However, the role of pyroptosis of Schwann cells in PNI remains unclear. Methods: We established a rat PNI model, and western blotting, transmission electron microscopy, and immunofluorescence staining were used to confirm pyroptosis of Schwann cells in PNI in vivo. In vitro, pyroptosis of Schwann cells was induced by lipopolysaccharides (LPS)+adenosine triphosphate disodium (ATP). An irreversible inhibitor of pyroptosis, acetyl (Ac)-Tyr-Val-Ala-Asp-chloromethyl ketone (Ac-YVAD-cmk), was used to attenuate Schwann cell pyroptosis. Moreover, the influence of pyroptotic Schwann cells on the function of dorsal root ganglion neurons (DRGns) was analyzed by a coculture system. Finally, the rat PNI model was intraperitoneally treated with Ac-YVAD-cmk to observe the effect of pyroptosis on nerve regeneration and motor function. Results: Schwann cell pyroptosis was notably observed in the injured sciatic nerve. LPS+ATP treatment effectively induced Schwann cell pyroptosis, which was largely attenuated by Ac-YVAD-cmk. Additionally, pyroptotic Schwann cells inhibited the function of DRGns by secreting inflammatory factors. A decrease in pyroptosis in Schwann cells promoted regeneration of the sciatic nerve and recovery of motor function in rats. Conclusion: Given the role of Schwann cell pyroptosis in PNI progression, inhibition of Schwann cell pyroptosis might be a potential therapeutic strategy for PNI in the future.


Assuntos
Traumatismos dos Nervos Periféricos , Ratos , Animais , Traumatismos dos Nervos Periféricos/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Células de Schwann/metabolismo , Regeneração Nervosa/fisiologia , Nervo Isquiático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...