Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 242: 117675, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984784

RESUMO

Earthen sites are the important cultural heritage that carriers of human civilization and contains abundant history information. Microorganisms are one of important factors causing the deterioration of cultural heritage. However, little attention has been paid to the role of biological factors on the deterioration of earthen sites at present. In this study, microbial communities of Jinsha earthen site soils with different deterioration types and degrees as well as related to environmental factors were analyzed. The results showed that the concentrations of Mg2+ and SO42- were higher in the severe deterioration degree soils than in the minor deterioration degree soils. The Chao1 richness and Shannon diversity indices of bacteria in different type deterioration were higher in the summer than in the winter; the Chao1 and Shannon indices of fungi were lower in the summer. The differences in bacterial and fungal communities were associated with differences in Na+, K+, Mg2+ and Ca2+ contents. Based on both the relative abundances in amplicon sequencing and isolated strains, the bacterial phyla Actinobacteria, Firmicutes and Proteobacteria, and the Ascomycota genera Aspergillus, Cladosporium and Penicillium were common in all soils. The OTUs enriched in the severe deterioration degree soils were mostly assigned to Actinobacteria and Proteobacteria, whereas the Firmicutes OTUs differentially abundant in the severe deterioration degree were all depleted. All bacterial isolates produced alkali, implying that the deterioration on Jinsha earthen site may be accelerated through alkali production. The fungal isolates included both alkali and acid producing strains. The fungi with strong ability to produce acid were mainly from the severe deterioration degree samples and were likely to contribute to the deterioration. Taken together, the interaction between soil microbial communities and environment may affect the soil deterioration, accelerate the deterioration process and threaten the long-term preservation of Jinsha earthen site.


Assuntos
Microbiota , Humanos , Bactérias/genética , Solo , Álcalis , Microbiologia do Solo
2.
Bioresour Technol ; 376: 128837, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36898557

RESUMO

Effects of low hydraulic loading rate (HLR) in dry weather and high HLR in wet weather on pollutant removal, microbial community, and sludge properties of a full-scale wastewater treatment plant (WWTP) were extensively studied to explore the risk of under-loaded operation for overflow pollution control. Long-term low HLR operation had an insignificant effect on the pollutant removal performance of the full-scale WWTP, and the system could withstand high-load shocks in wet weather. Low HLR resulted in higher oxygen and nitrate uptake rate due to the storage mechanism under the alternating feast/famine condition, and lower nitrifying rate. Low HLR operation enlarged particle size, deteriorated floc aggregation and sludge settleability, and reduced sludge viscosity due to the overgrowth of filamentous bacteria and inhibition of floc-forming bacteria. The remarkable increase in Thuricola and the contract morphology of Vorticella in microfauna observation confirmed the risk of flocs disintegration in low HLR operation.


Assuntos
Poluentes Ambientais , Microbiota , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Tempo (Meteorologia)
3.
Bioresour Technol ; 374: 128757, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36801443

RESUMO

A comparative study was conducted for the anaerobic/anoxic/aerobic (AAO) process and its two upgrading processes, five-stage Bardenpho and AAO coupling moving bed bioreactors (AAO + MBBR), using long-term operation data of six full-scale wastewater treatment plants. The three processes all had good COD and phosphorus removal performance. The reinforcing effects of carriers on nitrification were moderate at full-scale applications, while the Bardenpho was advantageous in nitrogen removal. The AAO + MBBR and Bardenpho processes both had higher microbial richness and diversity than the AAO. The AAO + MBBR favored bacteria to degrade complex organics (Ottowia and Mycobacterium) and to form biofilms (Novosphingobium), and preferentially enriched denitrifying phosphorus-accumulating bacteria (DPB) (norank_o__Run-SP154) with the highest anoxic to aerobic phosphorus uptake rates of 65.3 % - 83.9 %. The Bardenpho enriched bacteria tolerant to varied environments (Norank_f__Blastocatellaceae, norank_o__Saccharimonadales, and norank_o__SBR103), and was more suitable for the upgrading of the AAO because of its excellent pollutant removal performance and flexible operation mode.


Assuntos
Biofilmes , Microbiota , Anaerobiose , Reatores Biológicos , Bactérias/metabolismo , Nitrogênio/metabolismo , Nutrientes , Fósforo/metabolismo , Eliminação de Resíduos Líquidos , Esgotos , Desnitrificação
4.
J Environ Manage ; 328: 116977, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495823

RESUMO

Membrane fouling is the major obstacle for membrane bioreactors operated at a long sludge retention time to reduce sludge production. In this study, a sludge process reduction (SPR) module, consisting of a microaerobic tank and a settler, was inserted before an anoxic/oxic MBR (AO-MBR) to achieve dual objectives of fouling alleviation and sludge reduction. Three SPR-MBRs were operated to investigate influences of sludge recirculation ratios from the SPR settler to the microaerobic tank on process performance. Compared to AO-MBR, the SPR-MBRs reduced sludge production by 43.1-56.4% by maintaining sludge retention times above 175 d, and decreased foulant layer resistance and pore clogging resistance. Inserting SPR reduced the accumulation of dissolved organic matters and extracellular polymeric substances, enlarged sludge flocs, and decreased sludge viscoelasticity. However, increasing RSPR stimulated outward diffusion of extracellular polymeric substances and increased sludge viscosity. SPR-MBRs achieved effective sludge reduction by enriching hydrolytic (Trichococcus and Aeromonas) and fermentative genera (Lactococcus, Paludibacter, Macellibacteroides, and Acinetobacter) in the SPR, and alleviated membrane fouling by prohibiting the growth of extracellular polymeric substance-secreting bacteria and enriching filamentous bacteria to enlarge particle size. The results revealed that the SPR-MBR maximized sludge reduction with a very long sludge retention time, and alleviated membrane fouling synchronously.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Reatores Biológicos/microbiologia , Fermentação , Bactérias , Membranas Artificiais
5.
Sci Total Environ ; 851(Pt 2): 158346, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041603

RESUMO

A comparative study was conducted between an anaerobic side-stream reactor (ASSR) process and a sludge process reduction (SPR) activated sludge (SPRAS) process for uncovering crucial metabolic mechanisms governing sludge reduction. Both of two processes were efficient in removing pollutants, while the SPRAS (62.3 %) obtained much higher sludge reduction than the ASSR (27.9 %). The highest rate coefficients of sludge decay, heterotroph lysis and particles hydrolysis were 0.106, 0.219 and 0.054 d-1 in the SPR module, followed by ASSR with coefficients of 0.060, 0.135 and 0.047 d-1. The SPR module achieved an 81.9 % higher sludge decay mass with a 32.8 % smaller volume than the ASSR module. The SPR module preferentially enriched hydrolytic/fermentative and slow-growing bacteria. Metagenomic analysis revealed that SPR strengthened the key hydrolases and L-lactate dehydrogenase in the glycolysis pathways and weakened the citrate cycle, inducing metabolic uncoupling due to the reduced biosynthesis of ATP. Inserting ASSR only altered the ATP biosynthesis pathway, but maintenance metabolism was dominant for sludge reduction, with a long sludge retention time prolonging the food chain for predation.


Assuntos
Poluentes Ambientais , Esgotos , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Reatores Biológicos , Anaerobiose , Cinética , L-Lactato Desidrogenase , Hidrolases , Citratos , Trifosfato de Adenosina
6.
Environ Sci Pollut Res Int ; 29(1): 1173-1183, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34350571

RESUMO

Air pollution is a serious threat to ancient sites and cultural relicts. In this study, we collected indoor and outdoor PM2.5 samples and individual particles at the Exhibition Hall of Jinsha Site Museum in June 2020, and then the chemical components, sources, morphology, and mixing state of the fine particulate matter were analyzed. Our results show that the indoor and outdoor PM2.5 concentrations at the Exhibition Hall were 33.3±6.6 and 39.4±11.4 µg m-3, respectively. Although the indoor and outdoor concentrations of OC and EC were close, the proportion of secondary organic carbon in OC outdoor (33%) was higher than that indoor (27%). The PM2.5 was alkaline both indoors and outdoors, and the outdoor alkalinity was stronger than the indoor alkalinity. SNA (SO42-, NO3-, and NH4+) was the dominant component in the water-soluble inorganic ions; Na+, Mg2+, and Ca2+ were well correlated (R2> 0.9), and Cl- and K+ were also highly correlated (R2> 0.8). Enrichment factor analysis showed that Cu (indoor) and Cd were the main anthropogenic elements and that Cd was heavily enriched. Principal components analysis showed that the main sources of PM2.5 at Jinsha Site Museum were motor vehicles, dust, secondary sources, and combustion sources. The individual particles were classified as organic matter, S-rich, soot, mineral, and fly ash/metal particles, and most of these particles were internally mixed with each other. At last, we proposed pollution control measures to improve the air quality of museums and the preservation of cultural relicts.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , China , Monitoramento Ambiental , Museus , Tamanho da Partícula , Material Particulado/análise , Estações do Ano
7.
Bioresour Technol ; 316: 123925, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32758921

RESUMO

An anoxic/oxic membrane bioreactor (AO) and three pilot-scale anaerobic side stream reactors (ASSR) coupled MBRs (ASSR-MBRs), packed with 0%, 25% and 50% carriers in ASSRs, were continuously operated to study the mechanisms for sludge reduction. Four systems showed efficient COD and NH4+-N removal, while packing carriers significantly enhanced nitrogen removal. 25% filling fraction (AP25) achieved the highest sludge reduction efficiency of 50.5% compared to 0% (21.7%) and 50% (39.7%). Compared to ASSR-MBR, carriers enhanced the release of dissolved organic matters, and accelerated the secretion of enzyme for cell lysis and hydrolysis. In AP25, the presence of carriers prompted the formation of environment propitious to sludge reduction in bulk sludge. AP25 tended to enrich hydrolytic, fermentative and denitrifying bacteria to accelerate hydrolysis process, while excessive carriers had negative effect on biomass stability and movement of carriers.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Nitrogênio
8.
J Hazard Mater ; 397: 122744, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32361139

RESUMO

A two-stage desalination process was developed to achieve zero liquid discharge (ZLD) of flue gas desulfurization (FGD) wastewater by precipitating chloride as Friedel's salt. Influential factors for Friedel's salt precipitation, including dosage, reaction time, concentration of sulfate, were investigate by batch tests. Batch results showed that at calcium to aluminum molar ratio of 3.0, the optimal chloride removal and the highest crystallinity of Friedel's salt were obtained. Sulfate impeded Friedel's salt precipitation by competitive inhibition mechanism, and thus calcium sulfate removal was designed in advance of chloride removal. Batch results and long-term results of bench-scale experiments showed that magnesium and part of sulfate were effectively removed by lime addition in Stage I of the proposed process, and then the remaining sulfate and 48.1 % of chloride were precipitated as ettringite and Friedel's salt in Stage II. The effluent of the two-stage process was alkaline with low turbidity, and had considerable desulfurization capacity. Techno-economic evaluation showed that the two-stage process is technically feasible, economically viable and environmentally friendly technology for ZLD of FGD wastewater.

9.
Bioresour Technol ; 307: 123197, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32208343

RESUMO

Fouling characterization and aeration performance recovery of fine-pore diffusers operated for 10 years in a full-scale wastewater treatment plant were investigated to elucidate fouling mechanisms and develop cleaning strategy. The performance decline of diffusers was observed with dynamic wet pressure increased by 3.2 times and standard oxygen transfer efficiency dropped to 73%, which contributed to 15.0% increase in total energy consumption. Oxygen-affinity, filamentous and extracellular polymeric substances secreting bacteria tended to accumulate on the diffuser surface. External (mainly biofilm growth), internal (organic and inorganic matters) and irrecoverable (mainly material aging) foulants accounted for 34.1%, 45.4% and 20.1% of total fouling, respectively. HCl cleaning failed to restore aeration efficiency because it eliminated structural support formed by inorganics, leaving organic foulants broken into smaller fragments and distributed more dispersed. NaClO showed better cleaning efficiency by effectively removing organic foulants. Sequential cleaning by NaClO and HCl, which achieved the best recovery, was recommended.


Assuntos
Águas Residuárias , Purificação da Água , Biofilmes , Difusão , Membranas Artificiais , Oxigênio , Eliminação de Resíduos Líquidos
10.
Water Res ; 155: 310-319, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30852318

RESUMO

The sludge in situ reduction process by inserting an anaerobic side-stream reactor (ASSR) in a sludge return line provides a cost-effective approach to reduce sludge production in activated sludge systems. In this study, four pilot-scale membrane bioreactors (MBRs), including an AO-MBR for control, ASSR coupled MBR (ASSR-MBR), a MBR with ASSR packed with carriers (AP-MBR) and an AP-MBR with part of sludge ultrasonicated before fed into ASSR (AUP-MBR) were operated in parallel to investigate enhancing effects of ultrasonication and packing carriers on sludge reduction and pollutants removal performance under both normal and low temperature. Low temperature showed negligible impact on COD removal, deteriorated NH4+N and TN removal from 98.3% to 69.7% at 21.6 °C to 92.5% and 48.8% at 2.6 °C, and decreased sludge reduction efficiency (SRE) in ASSR-MBR. Packing carriers and ultrasonication both enhanced sludge reduction, especially under low temperature with SRE values increased from 8.2% of ASSR-MBR to 17.1% of AP-MBR and 32.6% of AUP-MBR at 4.5 ±â€¯2.5 °C. Packing carriers and ultrasonication increased cell rupture by 11.1% and 14.5% in aerobic MBR, enhanced protease activity in ASSR by 60.0% and 116.3%, and reduced ATP content for heterotrophic metabolism by 31.4% and 7.3%, respectively. MiSeq sequencing results showed that packing carriers enriched hydrolytic bacteria (Terrimonas, Dechloromonas and Woodsholea), slow growers (Sulfuritalea, Thauera and Azospira) and predatory bacteria (Bdellovibrio and norank_Saprospiraceae), while ultrasonication further enriched hydrolytic bacteria (norank_Saccharibacteria and Ferruginibacter). Packing carriers is more cost-effective than ultrasonication to enhance sludge reduction by partial damage to bacterial cells and promoting better interaction between bacteria, enzymes and substrates to favor particles hydrolysis.


Assuntos
Rios , Esgotos , Anaerobiose , Reatores Biológicos , Eliminação de Resíduos Líquidos
11.
J Environ Manage ; 235: 161-168, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30682668

RESUMO

Chemical cleaning wastewater (CCW) usually consists of pickling wastewater (PW) and alkaline cleaning wastewater (ACW), and the strategy of separate treatment or combined treatment affects pollutant removal efficiency and cost. In this study, separate and combined treatment of real PW and ACW generated from an on-site cleaning campaign were investigated. A neutralization - fluoride removal - coagulation - oxidation process was constructed for PW and mixed wastewater (MW) treatment, and operational conditions of each process were optimized. The optimal mixing ratio of PW and ACW in the primary neutralization tank was 3:7, which obtained a near neutral pH, efficient chromaticity and turbidity removal and good settling performance. The neutralized MW and PW were both adjusted pH to 9.5 to precipitate metal ions as hydroxides. After fluoride precipitated as CaF2, the fluoride removal rates of MW and PW were both 99.9%, respectively, and polyaluminum chloride was dosed to improve the settleability of CaF2. Then sodium hypochlorite oxidization was employed to remove NH3-N and soluble COD. Techno-economic analysis based on pilot-scale tests showed that separate treatment of PW and ACW obtained better effluent quality than combined treatment. The total cost of combined treatment (37.44 $/m3) was greatly higher than that of separate treatment of PW and ACW (18.20 $/m3). This study proposed a cost-effective strategy for CCW treatment, and suggested that neutralization with acidic or alkaline wastewater should be systematically considered for technical and economic feasibility.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Resíduos Industriais , Oxirredução , Eliminação de Resíduos Líquidos , Águas Residuárias
12.
J Hazard Mater ; 365: 572-580, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30469037

RESUMO

A novel sulfate removal process via ettringite precipitation was developed by dissolving ettringite and recycling Al3+ under low pH condition. Effects of solid to liquid ratios, pH and temperature on ettringite dissolution, Al recovery and transformation of precipitates were investigated by batch experiments. The optimum condition for Al recovery is pH =3.0, suspended solid of 9.8 g/L and temperature below 303 K. Ettringite dissolution consists of two stages, (i) rapid but inconsistent dissolution with the fastest release of sulfate, followed by calcium, and then Al(OH)63-; (ii) slow dissolution of Al(OH)63- core and gypsum precipitation. Dissolution of Al(OH)63- core follows the first-order kinetics with activation energy of 41.18 kJ/mol, while gypsum re-precipitation follows the second-order kinetics with activation energy of 26.36 kJ/mol. Long-term results of pilot-scale systems for treatment of real flue gas desulfurization wastewater showed that the process achieved sulfate removal of 98.3%-99.5% and Al recovery above 98.4%, and converted 98.8% sulfate in ettringite to CaSO4, which resulted in 66.0% of sludge reduction and improved sludge dewaterability. Economic evaluation shows that the process with Al recovery reduces cost of ettringite precipitation by 35.1%, and is highly feasible and cost-effective for industrial application of high-sulfate content wastewater treatment.

13.
Bioresour Technol ; 268: 684-691, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30144743

RESUMO

The process performance of a full-scale sludge process reduction activated sludge (SPRAS) system in long-term operation were investigated by inserting a micro-aerobic tank and a clarifier before conventional activated sludge process. The full-scale SPRAS for industrial park wastewater treatment achieved efficient pollutants removal and a low observed sludge yield of 0.074 g SS/g COD. Batch tests showed that influent feeding into the micro-aerobic tank favored sludge reduction, and obtained a sludge decay constant of 0.168 d-1. The SPRAS enriched slow growers and hydrolytic bacteria for sludge reduction, showed high simultaneous nitrification and denitrification efficiency in the micro-aerobic tank with abundant denitrifying bacteria, and improved sludge settleability by enriching floc-forming bacteria. Process configuration of the SPRAS was beneficial to enhance maintenance metabolism, cyclic micro-aerobic and anaerobic uncoupling, and lysis-cryptic growth for sludge reduction. Techno-economic analysis showed that the SPRAS greatly reduced sludge production with small footprint and low cost.


Assuntos
Esgotos/química , Reatores Biológicos , Desnitrificação , Hidrólise , Nitrificação , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Águas Residuárias
14.
Bioresour Technol ; 268: 36-44, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30071411

RESUMO

An anoxic/oxic membrane bioreactor (MBR) and three side-stream reactor (SSR) coupled membrane bioreactors were operated in parallel to investigate effects of dissolved oxygen (DO) level in SSR on sludge reduction and microbial community structure of SSR-MBRs. The four MBRs were equally efficient in COD and ammonium nitrogen removal. The anaerobic and micro-aerobic SSR favored nitrogen removal through denitrification, simultaneous nitrification and denitrification and autochthonous substrate release as carbon source. The micro-aerobic SSR achieved greatly higher sludge reduction efficiency (61.1%) than anaerobic (37.3%) and aerobic SSR (7.9%). Micro-aerobic SSR obtained the highest endogenous decay constant (0.035 d-1) compared to anaerobic (0.023 d-1) and aerobic SSR (0.015 d-1). High-throughput sequencing results revealed that anaerobic SSR enriched hydrolytic and fermentative bacteria, aerobic environment favored the growth of slow-growing bacteria, and micro-aerobic SSR stimulated biological activities of both anaerobic and aerobic bacteria.


Assuntos
Reatores Biológicos , Desnitrificação , Esgotos , Nitrificação , Nitrogênio , Rios , Eliminação de Resíduos Líquidos
15.
Bioresour Technol ; 267: 218-226, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30025317

RESUMO

An anoxic/oxic membrane bioreactor (AO-MBR) and three anaerobic side-stream reactor (ASSR) coupled MBRs (ASSR-MBR) were operated to investigate the effects of hydraulic retention time of ASSR (HRTA) and to elucidate sludge reduction mechanisms in ASSR-MBRs. Increasing HRTA from 3.3 to 6.6 h improved nitrogen removal, and enhanced sludge reduction from 8.0% to 40.9% in ASSR-MBR. The sludge decay coefficient was 0.0221 d-1 in MBRs, and 0.0231-0.0345 d-1 in ASSRs. The measured lysis rate coefficient of heterotrophic biomass was 0.083-0.112 d-1 in MBRs and 0.079-0.111 d-1 in ASSRs. The hydrolysis rate coefficient of inactive particulate organic matters (POMs) in ASSRs significantly exceeded that in the MBR. At HRTA of 6.6 h, POMs hydrolysis in ASSR (38.6%) is the dominant route of sludge reduction, and cell lysis occurred principally in aerobic tanks. Illumina-MiSeq sequencing showed ASSR-MBRs enriched hydrolytic and fermentative bacteria, and confirmed that anaerobic hydrolysis contributed most to sludge reduction.


Assuntos
Reatores Biológicos , Esgotos/química , Anaerobiose , Rios , Eliminação de Resíduos Líquidos
16.
Bioresour Technol ; 260: 177-185, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29625290

RESUMO

A micro-aerobic side-stream reactor (MSSR) was inserted in returned sludge line of a membrane bioreactor (MBR) for sludge reduction. Three MSSR coupled MBRs (M-MBRs) and an anoxic/oxic MBR (AO-MBR) were operated in parallel to investigate effects of micro-aerobic condition and hydraulic retention time (HRT) of MSSR (HRTM) on process performance. M-MBRs and AO-MBR were equally effective in COD and NH4-N removal. Rising HRTM from 3.3 to 6.7 h increased sludge reduction from 10.8% to 47.5%, and promoted dissolved organic matters release and utilization by enriching hydrolytic, fermentative and predatory bacteria. M-MBR at HRTM of 3.3 h obtained the highest nitrogen removal, and enriched denitrifiers (Thauera and Hyphomicrobium) in the MSSR. The highest relative abundance of polyphosphate-accumulating organisms was observed in M-MBR at HRTM of 5.0 h, which achieved the highest phosphorus removal. Prolonging HRTM to 6.7 h improved sludge dewaterability by enriching floc-formation bacteria (Nannocystis) and inhibiting filamentous bacteria (Candidatus_Alysiosphaera).


Assuntos
Reatores Biológicos , Esgotos , Hidrólise , Nitrogênio , Rios , Eliminação de Resíduos Líquidos
17.
Water Sci Technol ; 76(5-6): 1429-1435, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28953469

RESUMO

Flue gas desulfurization (FGD) wastewater treatment by conventional neutralization, chemical precipitation and coagulation process removes most suspended solids and heavy metals, and provides an effluent rich in calcium, alkalinity and chloride, which obstructs its reclamation and reuse but is in favor of phosphorus (P) precipitation. The goals of this study were to investigate feasibility of reusing FGD effluent as a calcium source for P removal from P-rich wastewater. Results revealed that increasing the volumetric ratio between FGD effluent and P-rich wastewater achieved higher pH value and Ca/P ratio, and thus enhanced P removal efficiency to 94.3% at the ratio of 40%. X-ray diffraction and scanning electron microscope analysis of harvested precipitates showed that increasing pH from 8 to 10 induced the conversion of hydroxyapatite to tri-calcium phosphate, and then to whitlockite. This study demonstrated that for reusing FGD effluent for P removal was highly feasible, both technically and economically. This process not only saves the cost of precipitants for P removal, but also provides an economical alternative for current zero liquid discharge technology for FGD wastewater, which requires high energy consumption and capital costs.


Assuntos
Cálcio/química , Fósforo/química , Águas Residuárias/química , Purificação da Água/economia , Precipitação Química , Conservação dos Recursos Naturais/economia , Metais Pesados , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
18.
Water Res ; 124: 139-148, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28753496

RESUMO

Due to the importance of wastewater aeration in meeting treatment requirements and due to its elevated energy intensity, it is important to describe the real nature of an aeration system to improve design and specification, performance prediction, energy consumption, and process sustainability. Because organic loadings drive aeration efficiency to its lowest value when the oxygen demand (energy) is the highest, the implications of considering their dynamic nature on energy costs are of utmost importance. A dynamic model aimed at identifying conservation opportunities is presented. The model developed describes the correlation between the COD concentration and the α factor in activated sludge. Using the proposed model, the aeration efficiency is calculated as a function of the organic loading (i.e. COD). This results in predictions of oxygen transfer values that are more realistic than the traditional method of assuming constant α values. The model was applied to two water resource recovery facilities, and was calibrated and validated with time-sensitive databases. Our improved aeration model structure increases the quality of prediction of field data through the recognition of the dynamic nature of the alpha factor (α) as a function of the applied oxygen demand. For the cases presented herein, the model prediction of airflow improved by 20-35% when dynamic α is used. The proposed model offers a quantitative tool for the prediction of energy demand and for minimizing aeration design uncertainty.


Assuntos
Oxigênio/química , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Esgotos , Eliminação de Resíduos Líquidos
19.
J Environ Manage ; 196: 518-526, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28347970

RESUMO

One of the main challenges in industrial wastewater treatment and recovery is the removal of sulfate, which usually coexists with Ca2+ and Mg2+. The effect of Mg2+ on sulfate removal by ettringite precipitation was investigated, and the process was optimized in the absence and presence of Mg2+. In the absence of Mg2+, the optimum conditions with sulfate removal of 99.7% were obtained at calcium-to-sulfate ratio of 3.20, aluminum-to-sulfate ratio of 1.25 and pH of 11.3 using response surface methodology. In the presence of Mg2+, sulfate removal efficiency decreased with increasing Mg2+ concentration, and the inhibitory effect of Mg2+ matched the competitive inhibition Monod model with half maximum inhibition concentration of 57.4 mmol/L. X-ray diffraction and Fourier transform infrared spectroscopy analyses of precipitates revealed that ettringite was converted to hydrotalcite-type (HT) compound in the presence of Mg2+. The morphology of precipitates was transformed from prismatic crystals to stacked layered crystals, which confirmed that Mg2+ competes with Ca2+ for Al3+ to form HT compound. A two-stage process was designed with Mg2+ removal before ettringite precipitation to eliminate the inhibitory effect, and is potential to realize sludge recovery at the same time of effective removal of sulfate and hardness.


Assuntos
Magnésio , Sulfatos , Águas Residuárias , Precipitação Química , Concentração de Íons de Hidrogênio , Minerais , Difração de Raios X
20.
Water Res ; 90: 369-377, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26766160

RESUMO

A sludge process reduction activated sludge (SPRAS), with a sludge process reduction module composed of a micro-aerobic tank and a settler positioned before conventional activated sludge process, showed good performance of pollutant removal and sludge reduction. Two SPRAS systems were operated to investigate effects of micro-aeration on sludge reduction performance and microbial community structure. When dissolved oxygen (DO) concentration in the micro-aerobic tank decreased from 2.5 (SPH) to 0.5 (SPL) mg/L, the sludge reduction efficiency increased from 42.9% to 68.3%. Compared to SPH, activated sludge in SPL showed higher contents of extracellular polymeric substances and dissolved organic matter. Destabilization of floc structure in the settler, and cell lysis in the sludge process reduction module were two major reasons for sludge reduction. Illumina-MiSeq sequencing showed that microbial diversity decreased under high DO concentration. Proteobacteria, Bacteroidetes and Chloroflexi were the most abundant phyla in the SPRAS. Specific comparisons down to the class and genus level showed that fermentative, predatory and slow-growing bacteria in SPL community were more abundant than in SPH. The results revealed that micro-aeration in the SPRAS improved hydrolysis efficiency and enriched fermentative and predatory bacteria responsible for sludge reduction.


Assuntos
Consórcios Microbianos , Oxigênio/química , Esgotos/microbiologia , Microbiologia da Água , Purificação da Água/métodos , Aerobiose , Bacteroidetes , Biodiversidade , Reatores Biológicos , Chloroflexi , DNA Bacteriano/análise , Fermentação , Hidrólise , Reação em Cadeia da Polimerase , Proteobactérias , Análise de Sequência de DNA , Eliminação de Resíduos Líquidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...