Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 30(6): 2072-2078, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-31257781

RESUMO

An experiment with single-factor design was conducted to investigate the effects of light intensity on growth and survival of cuttlefish (Sepia pharaonis). The specific growth rate, survival rate, oxygen consumption rate, ammonia excretion rate, lactic acid content in muscle, respiratory metabolic enzymes (including hexokinase, pyruvate kinase, and lactate dehydrogenase), supero-xide dismutase, and malondialdehyde in liver were measured in five constant light intensity treatments (10, 30, 50, 70, 90 µmol·m-2·s-1). The main results were as follows: The specific growth rate and survival rate remained steady initially and then decreased gradually with the increases of light intensity. There was no significant difference between groups 10 and 30 µmol·m-2·s-1, but they were significantly higher than those of the other groups. Exposed to light intensities of 10 and 30 µmol·m-2·s-1, the specific growth rates were (8.43±0.22)%·d-1 and (8.47±0.17)%·d-1, and the survival rates were (79.2±5.9)% and (80.0±4.9)%, respectively. Oxygen consumption rates and ammonia excretion rates increased first slowly and then sharply, and reached the maximum value when light intensity was 90 µmol·m-2·s-1, which was significantly higher than those of the other groups. Lactic acid content in muscle firstly decreased and then increased, with the minimum value at 30 µmol·m-2·s-1. The acid content of 10 µmol·m-2·s-1 was significantly lower than those of the other groups except 30 and 50 µmol·m-2·s-1. With the increases of light intensity, the activities of HK and PK in gills remained steady initially and then decreased gradually, and reached the highest level when exposed to 10 and 30 µmol·m-2·s-1, which were significantly higher than those of the other groups. LDH activity in muscle had the lowest level at the light intensity of 10 and 30 µmol·m-2·s-1, which was significantly lower than those of the other groups. SOD activity in liver firstly increased and then decreased, and reached the highest level ((104.93±4.17) U·mg-1 pro) when exposed to 70 µmol·m-2·s-1, which was significantly higher than those of the other groups. MDA content in liver first remained steady and then increased gradually, and reached the highest level ((5.06±0.35) nmol·mg-1 pro) when exposed to 90 µmol·m-2·s-1, which was significantly higher than those of the other groups. In conclusion, the optimum light intensities for growth, survival and metabolism of S. pharaonis were 10 and 30 µmol·m-2·s-1, beyond which S. pharaonis would be under stress. Therefore, sunproof measures should be taken to keep weak light condition in culture practice.


Assuntos
Sepia/fisiologia , Luz Solar , Animais , Fígado , Malondialdeído , Músculos , Sepia/enzimologia
2.
Ying Yong Sheng Tai Xue Bao ; 27(7): 2357-2362, 2016 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-29737146

RESUMO

This research was conducted to unravel the variation of oxygen consumption rate during different developmental stages and the effects of different ecological factors on embryonic oxygen consumption rate of Sepia pharaonis. The oxygen consumption rates were measured at twelve deve-lopmental stages by the sealed volumetric flasks, and four embryonic developmental periods (oosperm, gastrula, the formation of organization, endoskeleton) were selected under various ecological conditions, such as salinity (21, 24, 27, 30, 33), water temperature (18, 21, 24, 27, 30 ℃) and pH (7.0, 7.5, 8.0, 8.5, 9.0). The results showed that the oxygen consumption rate rose along with the developmental progress, and distinctly differed from each other. The oxygen consumption rate was 0.082 mg·(100 eggs)-1·h-1 during oosperm period, and rose to 0.279 mg·(100 eggs)-1·h-1 during gastrula period, which was significantly higher than that of blastula period. Finally, the oxygen consumption rate rose to 1.367 mg·(100 eggs)-1·h-1 during hatching period. The salinity showed a significant effect on oxygen consumption rate during the formation of organization and endoskeleton formation stage (P<0.05), but no significant effect during oosperm and gastrula periods (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of salinity, and reached the highest values [0.082, 0.200, 0.768 and 1.301 mg·(100 eggs)-1·h-1, respectively] at salinity 30. The water temperature had a significant effect on the embryo oxygen consumption rates of gastrula, and the formation of organization and endoskeleton formation stage (P<0.05), with the exception of oosperm (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of temperature, and reached the highest values at 27 ℃ [0.082, 0.286, 0.806 and 1.338 mg·(100 eggs)-1·h-1, respectively]. The pH had no significant effect on the oxygen consumption rates of four embryonic stages (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of pH. The oxygen consumption rates of gastrula, the formation of organization, endoskeleton reached the according highest values [0.281, 0.799 and 1.130 mg·(100 eggs)-1·h-1] at pH 8.5, but that during oosperm period occurred at pH 8.0 [0.116 mg·(100 eggs)-1·h-1].


Assuntos
Oxigênio/fisiologia , Sepia/fisiologia , Animais , Embrião não Mamífero/fisiologia , Salinidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA