Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 12: 1054231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36698417

RESUMO

The field of cancer neoantigen investigation has developed swiftly in the past decade. Predicting novel and true neoantigens derived from large multi-omics data became difficult but critical challenges. The rise of Artificial Intelligence (AI) or Machine Learning (ML) in biomedicine application has brought benefits to strengthen the current computational pipeline for neoantigen prediction. ML algorithms offer powerful tools to recognize the multidimensional nature of the omics data and therefore extract the key neoantigen features enabling a successful discovery of new neoantigens. The present review aims to outline the significant technology progress of machine learning approaches, especially the newly deep learning tools and pipelines, that were recently applied in neoantigen prediction. In this review article, we summarize the current state-of-the-art tools developed to predict neoantigens. The standard workflow includes calling genetic variants in paired tumor and blood samples, and rating the binding affinity between mutated peptide, MHC (I and II) and T cell receptor (TCR), followed by characterizing the immunogenicity of tumor epitopes. More specifically, we highlight the outstanding feature extraction tools and multi-layer neural network architectures in typical ML models. It is noted that more integrated neoantigen-predicting pipelines are constructed with hybrid or combined ML algorithms instead of conventional machine learning models. In addition, the trends and challenges in further optimizing and integrating the existing pipelines are discussed.

3.
Oncotarget ; 8(70): 115803-115816, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29383202

RESUMO

Multidrug resistance is a great obstacle in successful chemotherapy of colorectal cancer. However, the molecular mechanism underlying multidrug resistance is not fully understood. Dishevelled, a pivot in Wnt signaling, has been linked to cancer progression, while its role in chemoresistance remains unclear. Here, we found that Dishevelled1-3 was over-expressed in multidrug-resistant colorectal cancer cells (HCT-8/VCR) compared to their parental cells. Silencing Dishevelled1-3 resensitized HCT-8/VCR cells to multiple drugs including vincristine, 5-fluorouracil and oxaliplatin. Moreover, Dishevelled1-3 increased the protein levels of multidrug resistance protein 1 (P-gp/MDR1), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP), Survivin and Bcl-2 which are correlated with multidrug resistance. shß-catenin abolished Dishevelled-mediated these protein expressions. Unexpectedly, none of Dishevelled1-3 controlled ß-catenin accumulation and nuclear translocation. Furthermore, the nuclear translocations of Dishevelled1-3 were promoted in HCT-8/VCR cells compared to HCT-8. Dishevelled1-3 bound to ß-catenin in nucleus, and promoted nuclear complex formation and transcription activity of ß-catenin/TCF. Taken together, Dishevelled1-3 contributed to multidrug resistance in colorectal cancer via activating Wnt/ß-catenin signaling and inducing the expressions of P-gp, MRP2, BCRP, Survivin and Bcl-2, independently of ß-catenin accumulation and nuclear translocation. Silencing Dishevelled1-3 resensitized multidrug-resistant colorectal cancer cells, providing a novel therapeutic target for successful chemotherapy of colorectal cancer.

4.
Exp Cell Res ; 347(1): 105-113, 2016 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-27432651

RESUMO

Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/ß-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of ß-catenin. In addition, shß-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3ß/ß-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3ß reversed the shDVL2-induced down-regulation of ß-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/ß-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer.


Assuntos
Cisplatino/farmacologia , Proteínas Desgrenhadas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Células A549 , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/metabolismo , Transporte Proteico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...