Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 68(14): 1556-1566, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391345

RESUMO

Over decades, nearly all attempts to translate the benefits of therapeutic hypothermia in stroke models of lower-order species to stroke patients have failed. Potentially overlooked reasons may be biological gaps between different species and the mismatched initiation of therapeutic hypothermia in translational studies. Here, we introduce a novel strategy of selective therapeutic hypothermia in a non-human primate ischemia-reperfusion model, in which autologous blood was cooled ex vivo and the cool blood transfusion was administered at the middle cerebral artery just after the onset of reperfusion. Cold autologous blood cooled the targeted brain rapidly to below 34 °C while the rectal temperature remained around 36 °C with the assistance of a heat blanket during a 2-h hypothermic process. Therapeutic hypothermia or extracorporeal-circulation related complications were not observed. Cold autologous blood treatment reduced infarct sizes, preserved white matter integrity, and improved functional outcomes. Together, our results suggest that therapeutic hypothermia, induced by cold autologous blood transfusion, was achieved in a feasible, swift, and safe way in a non-human primate model of stroke. More importantly, this novel hypothermic approach conferred neuroprotection in a clinically relevant model of ischemic stroke due to reduced brain damage and improved neurofunction. This study reveals an underappreciated potential for this novel hypothermic modality for acute ischemic stroke in the era of effective reperfusion.

2.
Brain Circ ; 7(4): 241-246, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071839

RESUMO

Reperfusion injury (RI) is a harmful complication that takes place during recanalization treatment of ischemic organs. Currently, there are no efficacious treatments for protecting the organs against RI. Therefore, it is necessary to discover new strategies to prevent RI. As a novel intervention technique, controlled reperfusion has promising effects on protecting multiple organs from RI, and it is done by adjusting physical parameters of blood flow or chemical compositions of the reperfusion liquid. In this brief review, the status of various controlled reperfusion methods is presented, as well as their application in the protection of ischemic organs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...