Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400257, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847484

RESUMO

Nitroreductase (NTR) has long been a target of interest for its important role involved in the nitro compounds metabolism. Various probes have been reported for NTR analysis, but rarely able to distinguish the extracellular NTR from intracellular ones. Herein we reported a new NTR sensor, HCyS-NO2, which was a hemicyanine molecule with one nitro and two sulfo groups attached. The nitro group acted as the reporting group to respond NTR reduction. Direct linkage of nitro group into the hemicyanine π conjugate system facilitated the intramolecular electron transfer (IET) process and thus quenched the fluorescence of hemicyanine core. Upon reduction with NTR, the nitro group was rapidly converted into the hydroxylamino and then the amino group, eliminating IET process and thus restoring the fluorescence. The sulfo groups installed significantly increased the hydrophilicity of the molecule, and introduced negative charges at physiological pH, preventing the diffusion into bacteria. Both gram-negative and gram-positive bacteria were able to turn on the fluorescence of HCyS-NO2, without detectable diffusion into cells, providing a useful tool to probe the extracellular reduction process.

2.
Int J Nanomedicine ; 18: 5495-5510, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37791323

RESUMO

Purpose: Myocardial ischemia-reperfusion injury after myocardial infarction has always been a difficult problem in clinical practice. Endothelial cells and their secreted extracellular vesicles are closely related to inflammation, thrombosis formation, and other processes after injury. Meanwhile, low-molecular-weight gelators have shown great potential for nasal administration. This study aims to explore the therapeutic effects and significance of endothelial cell-derived extracellular vesicles combined with a hydrogel for nasal administration on myocardial ischemia-reperfusion injury. Methods: We chose a gel system composed of a derivative of glutamine amide and benzaldehyde as the extracellular vesicle delivery vehicle. This hydrogel was combined with extracellular vesicles extracted from mouse aortic endothelial cells and administered multiple times intranasally in a mouse model of ischemia-reperfusion injury to the heart. The delivery efficiency of the extracellular vesicle-hydrogel combination was evaluated by flow cytometry and immunofluorescence. Echocardiography, TTC Evan's Blue and Masson's staining were used to assess mouse cardiac function, infarct area, and cardiac fibrosis level. Flow cytometry, ELISA, and immunofluorescence staining were used to investigate changes in mouse inflammatory cells, cytokines, and vascular neogenesis. Results: The vesicles combined with the hydrogel have good absorption in the nasal cavity. The hydrogel combined with vesicles reduces the levels of pro-inflammatory Ly6C (high) monocytes/macrophages and neutrophils. It can also reduce the formation of microcirculation thrombi in the infarcted area, improve endothelial barrier function, and increase microvascular density in the injured area. As a result, the heart function of mice is improved and the infarct area is reduced. Conclusion: We first demonstrated that the combination of extracellular vesicles and hydrogel has a better absorption efficiency in the nasal cavity, which can improve myocardial ischemia-reperfusion injury by inhibiting inflammatory reactions and protecting endothelial function. Nasal administration of vesicles combined with hydrogel is a potential therapeutic direction.


Assuntos
Vesículas Extracelulares , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Células Endoteliais , Administração Intranasal , Hidrogéis/uso terapêutico
3.
PLoS One ; 15(9): e0239363, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32970710

RESUMO

BACKGROUND: Healthcare workers around the world are experiencing skin injury due to the extended use of personal protective equipment (PPE) during the COVID-19 pandemic. These injuries are the result of high shear stresses acting on the skin, caused by friction with the PPE. This study aims to provide a practical lubricating solution for frontline medical staff working a 4+ hours shift wearing PPE. METHODS: A literature review into skin friction and skin lubrication was conducted to identify products and substances that can reduce friction. We evaluated the lubricating performance of commercially available products in vivo using a custom-built tribometer. FINDINGS: Most lubricants provide a strong initial friction reduction, but only few products provide lubrication that lasts for four hours. The response of skin to friction is a complex interplay between the lubricating properties and durability of the film deposited on the surface and the response of skin to the lubricating substance, which include epidermal absorption, occlusion, and water retention. INTERPRETATION: Talcum powder, a petrolatum-lanolin mixture, and a coconut oil-cocoa butter-beeswax mixture showed excellent long-lasting low friction. Moisturising the skin results in excessive friction, and the use of products that are aimed at 'moisturising without leaving a non-greasy feel' should be prevented. Most investigated dressings also demonstrate excellent performance.


Assuntos
Infecções por Coronavirus/complicações , Lubrificantes/uso terapêutico , Equipamento de Proteção Individual/efeitos adversos , Pneumonia Viral/complicações , Pele/lesões , Adulto , Betacoronavirus , Fenômenos Biomecânicos , COVID-19 , Fricção , Humanos , Masculino , Corpo Clínico , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...