Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurorobot ; 17: 1255085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701068

RESUMO

Person-following is a crucial capability for service robots, and the employment of vision technology is a leading trend in building environmental understanding. While most existing methodologies rely on a tracking-by-detection strategy, which necessitates extensive datasets for training and yet remains susceptible to environmental noise, we propose a novel approach: real-time tracking-by-segmentation with a future motion estimation framework. This framework facilitates pixel-level tracking of a target individual and predicts their future motion. Our strategy leverages a single-shot segmentation tracking neural network for precise foreground segmentation to track the target, overcoming the limitations of using a rectangular region of interest (ROI). Here we clarify that, while the ROI provides a broad context, the segmentation within this bounding box offers a detailed and more accurate position of the human subject. To further improve our approach, a classification-lock pre-trained layer is utilized to form a constraint that curbs feature outliers originating from the person being tracked. A discriminative correlation filter estimates the potential target region in the scene to prevent foreground misrecognition, while a motion estimation neural network anticipates the target's future motion for use in the control module. We validated our proposed methodology using the VOT, LaSot, YouTube-VOS, and Davis tracking datasets, demonstrating its effectiveness. Notably, our framework supports long-term person-following tasks in indoor environments, showing promise for practical implementation in service robots.

2.
Heliyon ; 9(7): e17647, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37456010

RESUMO

Cervical cancer diagnosis hinges significantly on precise nuclei segmentation at early stages, which however, remains largely elusive due to challenges such as overlapping cells and blurred nuclei boundaries. This paper presents a novel deep neural network (DNN), the Global Context UNet (GC-UNet), designed to adeptly handle intricate environments and deliver accurate cell segmentation. At the core of GC-UNet is DenseNet, which serves as the backbone, encoding cell images and capitalizing on pre-existing knowledge. A unique context-aware pooling module, equipped with a gating model, is integrated for effective encoding of ImageNet pre-trained features, ensuring essential features at different levels are retained. Further, a decoder grounded in a global context attention block is employed to foster global feature interaction and refine the predicted masks.

3.
Sensors (Basel) ; 18(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424577

RESUMO

Person-following technology is an important robot service. The major trend of person-following is to utilize computer vision technology to localize the target person, due to the wide view and rich information that is obtained from the real world through a camera. However, most existing approaches employ the detecting-by-tracking strategy, which suffers from low speed, accompanied with more complicated detecting models and unstable region of interest (ROI) outputs in unexpressed situations. In this paper, we propose a novel classification-lock strategy to localize the target person, which incorporates the visual tracking technology with object detection technology, to adapt the localization model to different environments online, and to keep a high frame-per-second (FPS) on the mobile platform. This person-following approach consists of three key parts. In the first step, a pairwise cluster tracker is employed to localize the person. A positive and negative classifier is then utilized to verify the tracker's result and to update the tracking model. In addition, a detector pre-trained by a CPU-optimized convolutional neural network is used to further improve the result of tracking. In the experiment, our approach is compared with other state-of-art approaches by a Vojir tracking dataset, with three sequences in the items of human to prove the quality of person localization. Moreover, the common challenges during the following task are evaluated by several image sequences in a static scene, and a dynamic scene is used to evaluate the improvement from the classification-lock strategy. Finally, our approach is deployed on a mobile robot to test its performance on the function of the person-following. Compared with other state-of-art methods, our approach achieves the highest score (0.91 recall rate). In the static and dynamic scene, the output of the ROI based on the classification-lock strategy is significantly better than that without it. Our approach also succeeds in a long-term following task in an indoor multi-floor scenario.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...